Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan

Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan - Matematika Ku Bisa - Turunan fungsi $f(x)\,$ di $x=a\,$ dinotasikan dengan $f^\prime (a) \, $ , didefinisikan sebagai:

$ f^\prime (a) = \displaystyle \lim_{ \Delta x \to 0 } \frac{f(a+\Delta x ) - f(a)}{\Delta x} \, \, $ jika limitnya ada.

atau bisa ditulis : $ f^\prime (a) = \displaystyle \lim_{ h \to 0 } \frac{f(a+ h ) - f(a)}{h} \, \, $ jika limitnya ada.

Bentuk $ f^\prime (a) \, $ dibaca " $ f \, $ aksen $ \, a $ ". Jika kita tuliskan $ x = a + h \, $ , maka $ h = x - a \, $ dan untuk $ h \to 0 \, $ maka $ x \to a $ . Sehingga definisi limit di atas bisa juga ditulis:

$ f^\prime (a) = \displaystyle \lim_{ h \to 0 } \frac{f(a+ h ) - f(a)}{h} = \displaystyle \lim_{ x \to a } \frac{f( x ) - f(a)}{x-a} $

Notasi Turunan

Turunan pertama dari $ y = f(x) \, $ di notasikan: $ f^\prime (x) \, $ atau $ y^\prime $
Turunan kedua dari $ y = f(x) \, $ di notasikan : $ f^{\prime \prime} (x) \, $ atau $ y^{\prime \prime} $
dan seterusnya.

Turunan pertama dari $ y = f(x) \, $ di notasikan: $ \frac{df(x)}{dx} \, $ atau $ \frac{dy}{dx} $
Turunan kedua dari $ y = f(x) \, $ di notasikan: $ \frac{d^2f(x)}{(dx)^2} \, $ atau $ \frac{d^2y}{(dx)^2} $
dan seterusnya.

Definisi atau pengertian Turunan Fungsi Secara Umum

Turunan fungsi $ f(x) \, $ untuk semua $ x \, $ dinotasikan dengan $ f^\prime (x) \, $ , didefinisikan sebagai:

$ f^\prime (x) = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \, \, $ jika limitnya ada.

Bentuk $ f^\prime (x) \, $ dibaca " $ f \, $ aksen $ \, x $ ".

Contoh Soal:
Tentukan turunan dari $ f(x) \, $ atau $ f^\prime (x) \, $ dari masing-masing fungsi berikut:
a). $ f(x) = 5x - 2 $
b). $ f(x) = x^2 + 2x $
c). $ f(x) = \sin x $

Penyelesaian: (Bentuk $ f^\prime (x) \, $ artinya turunan dari fungsi $ f(x) $)

a). $ f(x) = 5x - 2 $
$ \begin{align} f^\prime (x) & = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{(5(x+ h) - 2) - (5x-2)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{(5x + 5h - 2) - (5x-2)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{5h}{h} \\ & = \displaystyle \lim_{ h \to 0 } 5 \\ & = 5 \end{align} $
Jadi, turunannya : $ f^\prime (x) = 5 $

b). $ f(x) = x^2 + 2x $
$ \begin{align} f^\prime (x) & = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{ [(x+ h)^2 +2(x+ h)] - (x^2 + 2x) }{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{ [x^2 + 2xh + h^2 + 2x + 2h] - (x^2 + 2x) }{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{ h^2 + 2xh + 2h }{h} \\ & = \displaystyle \lim_{ h \to 0 } h + 2x + 2 \\ & = 0 + 2x + 2 \\ & = 2x + 2 \end{align} $
Jadi, turunannya : $ f^\prime (x) = 2x + 2 $

c). $ f(x) = \sin x $
¤ Ingat bentuk:
$ \sin (A+B) = \sin A \cos B + \cos A \sin B $.
Sehingga:
$ \begin{align} f(x+h) & = \sin (x + h) \\ & = \sin x \cos h + \cos x \sin h \end{align} $

¤ Rumus:
$ \cos x = 1 - 2\sin ^2 \frac{1}{2} x $
Sehingga :
$ \cos h = 1 - 2\sin ^2 \frac{1}{2} h $.

¤Bentuk :
$ \begin{align} \cos h - 1 & = (1 - 2\sin ^2 \frac{1}{2} h) - 1 \\ & = - 2\sin ^2 \frac{1}{2} h \\ & = - 2\sin \frac{1}{2} h . \sin \frac{1}{2} h \end{align} $

¤ Menentukan penyelesaiannya:
$ \begin{align} f^\prime (x) & = \displaystyle \lim_{h \to 0 } \frac{f(x+h) - f(x) }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ (\sin x \cos h + \cos x \sin h) - \sin x }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ (\sin x \cos h - \sin x ) + \cos x \sin h }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin x ( \cos h - 1 ) + \cos x \sin h }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin x ( \cos h - 1 ) }{h} \\ & + \displaystyle \lim_{h \to 0 } \frac{ \cos x \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ ( \cos h - 1 ) }{h} \\ & + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ - 2\sin \frac{1}{2} h . \sin \frac{1}{2} h }{h} \\ & + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ \sin \frac{1}{2} h }{h} . (- 2\sin \frac{1}{2} h ) \\ & + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \frac{1}{2}. (- 2\sin \frac{1}{2} 0 ) \\ & + \cos x . 1 \\ & = \sin x . \frac{1}{2}. (- 2\sin 0 ) + \cos x \\ & = \sin x . \frac{1}{2}. (0 ) + \cos x \\ & = 0 + \cos x \\ & = \cos x \end{align} $

Jadi, turunannya : $ f^\prime (x) = \cos x \, $ untuk $ f(x) = \sin x $

Demikianlah cara Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan. Semoga tulisan sederhana ini bermanfaat bagi pembaca sekalian.

0 Response to "Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan"

Post a Comment

Komentar yang tidak baik atau menampilkan segala hal yang tidak baik, tidak akan kami setujui atau akan kami hapus!

Iklan Atas Artikel

Apakah Anda ingin PINTAR MATEMATIKA?  Ayo Belajar Matematika dari dasar! Baca Ebook Belajar Matematika dari Dasar.

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel

Mau jual Ebook di Google Play, tapi belum punya akun mitra google book? Baca Cara Daftar Mitra Google Buku yang Sementara Ditutup: Saya Berkali-kali Diterima Lho