Cara Menentukan Bentuk Sederhana Pembagian Bentuk Perpangkatan

Ada sifat yang menyatakan bahwa untuk setiap $a \neq 0$ berlaku:
  • $ \frac{a^m}{a^n}=a^{m-n} $
  •  $a^{-n} = \frac{1}{a^n} $
Contoh: $ \frac{x^5}{x^3}=x^{5-3}=x^2$

Dua sifat ini merupakan sifat yang telah kalian pelajari pada materi perpangkatan, baik di SMP (Operasi pada Bentuk Aljabar) maupun di SMA (Akar dan Perpangkatan). Dua sifat ini sering dipakai untuk menyelesaikan soal Ujian Nasional SMA/MA setiap tahunnya. Oleh karena itu, bagi siswa yang sedang mempersiapkan diri pada ujian nasional maka berikut ini kami berikan contoh soal UN Matematika tahun 2017.

    Soal UN Mtk SMA/MA IPS 2017 kode 2217

    "4. Diketahui $p \neq 0$ dan $q \neq 0$, bentuk sederhana $(\frac{8^2p^{-3}q^4}{16^2p^2q^{-5}})^{-1}$ adalah...
    A. $\frac{2^2q^9}{p^5} $
    B. $\frac{2^2p^5}{q^9} $
    C. $\frac{p^5}{2q^9} $
    D. $\frac{q^9}{2^2p^5} $
    E. $\frac{p^5q^9}{2^2} $"

    Penyelesaian:

    $\begin{align} (\frac{8^2p^{-3}q^4}{16^2p^2q^{-5}})^{-1} &= \frac{16^2p^2q^{-5}}{8^2p^{-3}q^4} \\ &= \frac{2^28^2}{8^2} p^{2-(-3)}q^{-5-4} \\ &= 2^2 p^{5}q^{-9} \\ &= \frac{2^2p^5}{q^9} \end{align}$

    Jadi, jawaban yang benar dari soal tersebut adalah B.

    Demikian penjelasan singkat "Cara Menentukan Bentuk Sederhana Pembagian Bentuk Perpangkatan". Semoga postingan ini bermanfaat, terimakasih atas kunjungannya!

    Berlangganan update artikel terbaru via email:

    0 Response to "Cara Menentukan Bentuk Sederhana Pembagian Bentuk Perpangkatan "

    Post a Comment

    Komentar yang tidak baik atau menampilkan segala hal yang tidak baik, tidak akan kami setujui atau akan kami hapus!

    Iklan Atas Artikel

    Iklan Tengah Artikel 1

    Iklan Tengah Artikel 2

    Iklan Bawah Artikel


    KEPOIN DI SINI
    Mau gabung Grup WA Matematika Ku Bisa? Join Di Sini!