Belajar Matematika Online

PERHATIAN: Mohon maaf, jika ada tampilan iklan atau iklan yang tidak baik, jangan diteruskan! Kami akan melakukan upaya pemblokiran, terima kasih!
Online Maths School

Pengertian Persamaan Diferensial Biasa, Linier, dan Tak Linier



Bacaan sebelumnya Masalah Syarat Awal dan Syarat Batas. Pada tulisan tersebut dijelaskan bahwa dalam pemodelan fenomena perubahan dunia nyata, syarat awal sering dikaitkan dengan variabel waktu sedangkan syarat batas sering dikaitkan dengan variabel posisi. Jika melibatkan keduanya, membentuk persamaan diferensial.

Pada tulisan kali ini, kita akan membahas pengertian persamaan diferensial biasa, persamaan diferensial linier dan tak linier beserta dengan contohnya.

Pengertian Persamaan Diferensial Biasa


Persamaan diferensial biasa (PDB) adalah suatu persamaan diferensial yang melibatkan hanya satu variabel bebas. Jika diambil y(x) suatu fungsi dengan y disebut variabel tak bebas dan x variabel bebas, maka suatu persamaan diferensial biasa dapat dinyatakan dalam bentuk:

$F(x, \ y, \ y", \ ... \ y^{(n)})=0$

Order dari suatu PDB didefinisikan sebagai tingkat dari derivatif tertinggi yang muncul dalam persamaan diferensial. Derajat dari suatu PD adalah pangkat tertinggi dari suku derivatif tertinggi yang muncul dalam PD.

Contoh: 
  1. $1+ ( \frac{dy}{dx} )^2 = 3 \frac{d^2y}{(dx)^2}$ adalah PDB tingkat dua berderajat satu.
  2. $x (y")^3+(y')^4-y=0$ adalah PDB tingkat dua berderajat tiga.
Pengertian Persamaan Linier dan Tidak Linier

Suatu PD adalah linier jika dan hanya jika setiap suku persanaan yang memuat variabel terikat atau derivatif-derivatifnya adalah berderajat 1. 

Contoh:
  1. $y"+4xy'+2y=cos \ x $ adalah PD biasa, linier, dan berorde 2.
  2. $y"+4yy'+y'+2y=cos \ x$ adalah PD tidak linier karena memuat $yy'$.
  3.  $\frac {d^2u}{(dx)^2}+ \frac {dv}{dt}+u+v=sin \ (u)$ adalah PD parsial, linier dalam v, tetapi tidak linier dalam u karena ada fungsi $sin \ (u) $. Jadi, PD tersebut tidak linier.
  4. $\frac {d^2x}{(dt)^2}+ \frac{dy}{dt}+xy =sin \ (t) $ adalah linier dalam setiap variabel tak bebas x dan y tetapi tidak linier dalam himpunan {x, y}. Jadi, PD tersebut tidak linier.
Bacaan selanjutnya Persamaan Diferensial Biasa Linier Orde n.

Pencarian Terkait
Perhatian: Mau pasang iklan disini? Chat Via WA 085246493737
MY IKLAN
Buku Metode Berhitung Alif
Pesan Di Sini
atau lihat dan dapatkan ebooknya di Google Play Book

Tidak ada komentar:

Posting Komentar

Komentar yang tidak baik atau menampilkan segala hal yang tidak baik, tidak akan kami setujui atau akan kami hapus!

Info Kesehatan

Kontak Kami

SMS/Phone : 082271051411
WhatsApp: 085246493737
Email: matematikakubisa@gmail.com

Statistik Pengunjung

Copyright © Matematika Ku Bisa. All rights reserved. Template by CB. Theme Framework: Responsive Design
Messenger Admin
×
_

Hai, Kamu bisa kirim pesan ke Admin di sini! Jangan lupa like halaman admin ya, terima kasih!