Belajar Matematika Online

IXL Math On IXL, math is more than just numbers. With unlimited questions, engaging item types, and real-world scenarios, IXL helps learners experience math at its most mesmerizing! Pre-K skills Represent numbers - up to 5 Inside and outside Classify shapes by color Long and short Wide and narrow See all 77 pre-K skills Kindergarten skills Fewer, more, and same Read clocks and write times Seasons Count money - pennies through dimes Shapes of everyday objects I See all 182 kindergarten skills First-grade skills Counting tens and ones - up to 99 Hundred chart Subtraction facts - numbers up to 10 Read a thermometer Measure using an inch ruler See all 210 first-grade skills Second-grade skills Counting patterns - up to 1,000 Greatest and least - word problems - up to 1,000 Compare clocks Create pictographs II Which customary unit of volume is appropriate? See all 287 second-grade skills Third-grade skills Convert between standard and expanded form Count equal groups Estimate sums Show fractions: area models Find equivalent fractions using area models See all 384 third-grade skills Fourth-grade skills Addition: fill in the missing digits Divide larger numbers by 1-digit numbers: complete the table Objects on a coordinate plane Circle graphs Place values in decimal numbers See all 340 fourth-grade skills Fifth-grade skills Least common multiple Multiply fractions by whole numbers: word problems Sale prices Find start and end times: word problems Parts of a circle See all 347 fifth-grade skills Sixth-grade skills Compare temperatures above and below zero Which is the better coupon? Evaluate variable expressions with whole numbers Classify quadrilaterals Create double bar graphs See all 321 sixth-grade skills Seventh-grade skills Solve percent equations Arithmetic sequences Evaluate multi-variable expressions Identify linear and nonlinear functions Pythagorean theorem: word problems See all 289 seventh-grade skills Eighth-grade skills Write variable expressions for arithmetic sequences Add and subtract polynomials using algebra tiles Add polynomials to find perimeter Multiply and divide monomials Scatter plots See all 317 eighth-grade skills Algebra 1 skills Write and solve inverse variation equations Write an equation for a parallel or perpendicular line Solve a system of equations by graphing Solve a system of equations using substitution Rational functions: asymptotes and excluded values See all 309 Algebra 1 skills Geometry skills Triangle Angle-Sum Theorem Proving a quadrilateral is a parallelogram Properties of kites Similarity of circles Perimeter of polygons with an inscribed circle See all 221 Geometry skills Algebra 2 skills Multiply complex numbers Product property of logarithms Find the vertex of a parabola Write equations of ellipses in standard form from graphs Reference angles See all 322 Algebra 2 skills Precalculus skills Identify inverse functions Graph sine functions Convert complex numbers between rectangular and polar form Find probabilities using two-way frequency tables Use normal distributions to approximate binomial distributions See all 261 Precalculus skills Calculus skills Find limits using the division law Determine end behavior of polynomial and rational functions Determine continuity on an interval using graphs Find derivatives of polynomials Find derivatives using the chain rule I See all 97 Calculus skills Mathematics is a persistent source of difficulty and frustration for students of all ages. Elementary students spend years trying to master arithmetic. Teens struggle with the shift to algebra and its use of variables. High-school students must face diverse challenges like geometry, more advanced algebra, and calculus. Even parents experience frustration as they struggle to recall and apply concepts they had mastered as young adults, rendering them incapable of providing math help for their children. Whether you need top Math tutors in Boston, Math tutors in Detroit, or top Math tutors in Dallas Fort Worth, working with a pro may take your studies to the next level. The truth is, everyone struggles with math at one time or another. Students, especially at the high-school level, have to balance challenging coursework with the demands of other courses and extracurricular activities. Illness and school absences can leave gaps in a student’s instruction that lead to confusion as more advanced material is presented. Certain concepts that are notoriously difficult to master, such as fractions and the basics of algebra, persist throughout high school courses, and if not mastered upon introduction, can hinder a student’s ability to learn new concepts in later courses. Even students confident in their math skills eventually find a course or concept incomprehensible as they reach advanced math classes. In other words, no matter what your age or ability, everyone eventually needs help with math. Varsity Tutors offers resources like free Math Diagnostic Tests to help with your self-paced study, or you may want to consider a Math tutor. Varsity Tutors is happy to offer free practice tests for all levels of math education. Students can take any one of hundreds of our tests that range from basic arithmetic to calculus. These tests are conveniently organized by course name (e.g. Algebra 1, Geometry, etc.) and concept (e.g. “How to graph a function”). Students can select specific concepts with which they are struggling or concepts that they are trying to master. Students can even use these concept-based practice tests to identify areas in which they may not have realized they were struggling. For instance, if a student is struggling with his or her Algebra 1 course, he or she can take practice tests based on broad algebra concepts such as equations and graphing and continue to practice in more specific subcategories of these concepts. In this way, students can more clearly differentiate between those areas that they fully understand and those that could use additional practice. Better yet, each question comes with a full written explanation. This allows students to not only see what they did wrong, but provides the student with step-by-step instructions on how to solve each problem. In addition to the Math Practice Tests and Math tutoring, you may also want to consider taking some of our Math Flashcards. Varsity Tutors’ Learning Tools also offer dozens of Full-Length Math Practice Tests. The longer format of the complete practice tests can help students track and work on their problem-solving pace and endurance. Just as on the results pages for the concept-specific practice tests, the results for these longer tests also include a variety of scoring metrics, detailed explanations of the correct answers, and links to more practice available through other Learning Tools. These free online Practice Tests can assist any student in creating a personalized mathematics review plan, too, as the results show which of the concepts they already understand and which concepts may need additional review. After reviewing the skills that need work, students can take another Full-Length Math Practice Test to check their progress and further refine their study plan. Once a student creates a Learning Tools account, they can also track their progress on all of their tests. Students can view their improvement as they begin getting more difficult questions correct or move on to more advanced concepts. They can also share their results with tutors and parents, or even their math teacher. Create a Varsity Tutors Learning Tools account today, and get started on a path to better understanding math!
Mau EBOOK "MATEMATIKA KU BISA"? KLIK DI SINI!
Hasil Pencarian di Blog Matematika Ku Bisa
Showing posts with label Kalkulus. Show all posts
Showing posts with label Kalkulus. Show all posts

Definisi Limit Fungsi Secara Intuisi

Definisi Limit Fungsi Secara Intuisi
Setelah mempelajari Pra-Kalkulus dengan baik, memudahkan Anda mempelajari materi kalkulus yaitu limit, turunan, dan integral. Kalkulus dibangun dari konsep dasar berupa limit fungsi. Sehingga, pada kesempatan ini, yang akan dipelajari mula-mula adalah Definisi Limit Fungsi Secara Intuisi dan dilengkapi dengan Menyelesaikan Limit Fungsi dengan Cara Substitusi. Setelah menguasai materi ini, selanjutnya pelajarilah Definisi Limit Secara Formal. Anda bisa membaca tulisan kami yang lain pada blog kami yang lain dengan judul Cara Membuktikan Nilai Limit Menggunakan Definisi.


Berikut diberikan definisi/pengertian dari limit fungsi secara intuisi (bukan secara formal).

Definisi: Misalkan $ f $ sebuah fungsi dari bilangan real ke bilangan real ($ f : R \rightarrow R \, $) dan misalkan $ L $ dan $ a $ bilangan real. Kita katakan bahwa:

$ \displaystyle \lim_{x \to a } f(x) = L \, $ 
jika dan hanya jika $ f(x) $ mendekati $ L $ untuk semua $ x $ mendekati $ a $.

Adapun Cara Membaca notasi limit fungsi di atas adalah sebagai berikut.
$ \displaystyle \lim_{x \to a } f(x) = L \, $ dibaca limit fungsi $ f(x) \, $ untuk $ x $ mendekati $ a $ sama dengan $ L $
Syarat suatu fungsi mempunyai limit di titik tertentu:

Suatu limit dikatakan ada jika limit tersebut memiliki limit kiri dan limit kanan yang sama. Limit kiri adalah pendekatan nilai fungsi real dari sebelah kiri yang dinotasikan $ \displaystyle \lim_{x \to a^{-} } f(x) $ . Sedangkan limit kanan adalah pendekatan nilai fungsi real dari sebelah kanan yang dinotasikan $ \displaystyle \lim_{x \to a^{+} } f(x) $ .

Artinya, jika nilai $ \displaystyle \lim_{x \to a^{-} } f(x) = L \, $ dan $ \displaystyle \lim_{x \to a^{+} } f(x) = L \, $ , maka nilai $ \displaystyle \lim_{x \to a^{-} } f(x) = \displaystyle \lim_{x \to a } f(x) = \displaystyle \lim_{x \to a^{+} } f(x) = L \, $ atau $ \displaystyle \lim_{x \to a } f(x) = L $ .

Contoh: Apakah fungsi berikut ini mempunyai limit atau tidak?

$ f(x) = \left\{ \begin{array}{ccc} x^2 & \text{jika} & x \leq 1 \\ x+1 & \text{jika} & x > 1 \end{array} \right. $
untuk $ x \, $ mendekati 1?

Penyelesaian:
Keterangan fungsi: jika nilai $ x \leq 1 \, $ maka berlaku $ f(x) = x^2 $ dan jika nilai $ x > 1 \, $ maka berlaku $ f(x) = x + 1 $

Jadi, untuk x mendekati 1 dari arah kiri maka f(x) mendekati 1:

$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x^2 =1^2= 1$

dan untuk x mendekati 1 dari arah kanan maka f(x) mendekati 2:

$ \lim_{x \to 1^{+} } f(x) = \lim_{x \to 1^{+}} x+1 =1+1=2 $

Karnena nilai limit kiri dan kananya tidak sama, maka fungsi $ f(x) = \left\{ \begin{array}{ccc} x^2 & \text{jika} & x \leq 1 \\ x+1 & \text{jika} & x > 1 \end{array} \right. \, $ untuk $ x \, $ mendekati 1 tidak mempunyai limit.

Mempelajari definisi limit fungsi, baik secara intuisi maupun seara formal adalah syarat dan dasar memahami materi limit fungsi dan mempelajari teorema-teorema limit. Salah satu teorema yang sering digunakan dalam menyelesaikan soal-soal limit fungsi, baik fungsi aljabar maupun fungsi trigonometri adalah teorema substitusi yang akan dibahas berikut ini. 

Menyelesaikan Limit Fungsi dengan Cara Substitusi maksudnya adalah  mensubstitusikan/memasukan langsung nilai $ x \, $ ke fungsi $ f(x) $ tersebut yakni sebagai berikut.
$ \displaystyle \lim_{x \to a } f(x) = f(a) $ 
Cara substitusi ini bisa dilakukan apabila f(a) memiliki nilai atau dengan kata lain f(x) terdefinisi pada x=a. Apabila tidak memiliki nilai maka cara substitusi ini tidak dapat dilakukan. Perhatikan contoh soal dan penyelesaiannya berikut ini.

Tentukan nilai limit dari bentuk berikut!
a). $ \displaystyle \lim_{x \to 2 } 2x + 1 $
b). $ \displaystyle \lim_{x \to -1 } \frac{x^2 + 2}{2x - 1 } $

Penyelesaian:

a). $ \displaystyle \lim_{x \to 2 } 2x + 1 = 2(2) + 1 = 4 + 1 = 5 $
artinya nilai $ \displaystyle \lim_{x \to 2 } 2x + 1 = 5 $

b). $ \displaystyle \lim_{x \to -1 } \frac{x^2 + 2}{2x - 1 } = \frac{(-1)^2 + 2}{2(-1) - 1 } = \frac{1 + 2 }{-2-1} = \frac{3}{-3} = -1 $
artinya nilai $ \displaystyle \lim_{x \to -1 } \frac{x^2 + 2}{2x - 1 } = -1 $.

Coba perhatikan jawaban soal pada bagian a), dengan mensubstitusikan x=2 ke fungsi f(x)=2x+1 diperoleh f(2)=5. Oleh karena itu,  $ \displaystyle \lim_{x \to 2 } 2x + 1 = 5 $. Perhatikan juga jawaban soal pada bagian b), dengan mensubstitusikan x=-1 ke fungsi $ f(x)= \frac{x^2 + 2}{2x - 1 }$ diperoleh f(-1)=-1. Oleh karena itu, $ \displaystyle \lim_{x \to -1 } \frac{x^2 + 2}{2x - 1 } = -1 $. Adapaun apabila f(a) tidak memiliki nilai, caranya telah dijelaskan dalam tulisan lain dalam blog ini. Semoga tulisan sederhana ini bermanfaat. Terima kasih atas kunjungannya.

Rumus Dasar Menyelesaikan Soal-Soal Turunan Fungsi

Setelah mahir Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan Fungsi baik untuk fungsi aljabar maupun fungsi trigonometri. Sekarang pada tulisan ini, akan diberikan Rumus Dasar Turunan Fungsi yang akan digunakan untuk Menyelesaikan Soal-Soal Turunan Fungsi.

Berikut ini daftar rumus-rumus dasar turunan fungsi:

1). $ y = c \rightarrow y^\prime = 0 $ .
dimana $ c \, $ adalah konstanta. Jadi, setiap kostanta turunannya adalah nol.

2). $ y = ax^n \rightarrow y^\prime = n.a.x^{n-1} $
dimana $ n \, $ adalah bilangan real.

3). $ y = U \pm V \rightarrow y^\prime = U^\prime \pm V^\prime $

4). $ y = U.V \rightarrow y^\prime = U^\prime . V + U. V^\prime $

5). $ y = \frac{U}{V} \rightarrow y^\prime = \frac{U^\prime . V - U. V^\prime}{V^2} $

dimana $ U \, $ dan $ V \, $ adalah dua buah fungsi yang berbeda.

6). $ y = [g(x)]^n \rightarrow y^\prime = n.[g(x)]^{n-1} . g^\prime (x) $

7). $ y = f[g(x)] \rightarrow y^\prime = f^\prime [g(x)] . g^\prime (x) $

Contoh-contoh soalnya sebagai berikut.

1). Tentukan turunan fungsi aljabar berikut:
a). $ y = 3 $
b). $ y = x^5 $
c). $ y = \frac{5}{x^2} $
d). $ y = 3\sqrt{x} $
e). $ y = \frac{2}{3x\sqrt{x} } $
f). $ y = \frac{3}{2}\sqrt[5]{x^3} $

Penyelesaian :

a). Turunan konstanta adalah nol (rumus dasar 1).
$ y = 3 \rightarrow y^\prime = 0 $
b). Rumus dasar 2) dengan $ n = 5 $
$ y = x^5 \rightarrow y^\prime = n.x^{n-1} = 5.x^{5-1} = 5x^4 $
c). Rumus dasar 2, dan gunakan sifat eksponen,
$ y = \frac{5}{x^2} = 5 x^{-2} \\ \rightarrow y^\prime = n . a . x^{n-1} \\ = (-2). 5. x^{(-2) - 1} \\ = -10x^{-3} = \\ \frac{-10}{x^3} $
d). Gunakan rumus dasar 2, dan sifat eksponen,
$ y = 3\sqrt{x} = 3x^\frac{1}{2} \\ \rightarrow y^\prime = n.a.x^{n-1} \\ = \frac{1}{2}. 3. x^{\frac{1}{2} - 1} \\ = \frac{3}{2} x^{-\frac{1}{2}} \\ = \frac{3}{2} \frac{1}{x^\frac{1}{2}} \\ = \frac{3}{2\sqrt{x}} $
e). Rumus dasar 2, dan gunakan sifat eksponen,
$ y = \frac{2}{3x\sqrt{x} } = \frac{2}{3x^1. x^\frac{1}{2} } = \frac{2}{3x^\frac{3}{2} } = \frac{2}{3} x^{-\frac{3}{2}} $
$ y^\prime = n.a.x^{n-1} = -\frac{3}{2} . \frac{2}{3} . x^{-\frac{3}{2} - 1 } = - x^{-\frac{5}{2}} = \frac{-1}{x^\frac{5}{2}} = \frac{-1}{x^2.x^\frac{1}{2}} = \frac{-1}{x^2\sqrt{x}} $
f). Rumus dasar 2, dan gunakan sifat eksponen,
$ y = \frac{3}{2}\sqrt[5]{x^3} = \frac{3}{2}x^\frac{3}{5} \rightarrow y^\prime = n.a.x^{n-1} = \frac{3}{5}. \frac{3}{2}.x^{\frac{3}{5} - 1} = \frac{9}{10} x^{-\frac{2}{5}} = \frac{9}{10} \frac{1}{ x^{\frac{2}{5}} } = \frac{9}{10 \sqrt[5]{x^2}} $

2). Tentukan turunan ($ f^\prime (x) $) dari setiap fungsi berikut.
a). $ f(x) = 3x^2 - 2x $
b). $ f(x) = 2\sqrt{x} + 5x^3 - 7 $
c). $ f(x) = x^5 + 2x^3 - 3x + 1 $

Penyelesaian :

Untuk menentukan turunan fungsi-fungsinya, kita gunakan rumus dasar 3. Rumus dasar 3 itu maksudnya setiap suku masing-masing diturunkan.
a). $ f(x) = 3x^2 - 2x $
Misalkan :
$ U = 3x^2 \rightarrow U^\prime = 2.3.x^{2-1} = 6x $
$ V = 2x= 2x = 2x^1 \rightarrow V^\prime = 1.2.x^{1-1} = 2 . x^0 = 2.1 = 2 $
Untuk fungsi yang variabelnya pangkat satu : $ y = ax \rightarrow y^\prime = a $
Turunan fungsinya adalah :
$ f(x) = U- V \rightarrow f^\prime (x) = U^\prime - V^\prime = 6x - 2 $
b). $ f(x) = 2\sqrt{x} + 5x^3 - 7 = 2x^\frac{1}{2} + 5x^3 - 7 $
$ f^\prime (x) = \frac{1}{2} . 2 . x^{\frac{1}{2} - 1 } + 3.5.x^{3-1} - 0 = x^{-\frac{1}{2}} + 15x^2 = \frac{1}{\sqrt{x} } + 15x^2 $
c). $ f(x) = x^5 + 2x^3 - 3x + 1 \rightarrow f^\prime (x) = 5.x^{5-1} + 3.2.x{3-1} - 3 + 0 = 5x^4 + 6x^2 - 3 $

3). Tentukan turunan fungsi aljabar dari fungsi $ y = (x^2-1)(2x^3 + x) $

Penyelesaian :

Kita gunakan rumus dasar 4. Sebenarnya setiap fungsi bisa dikalikan terlebih dahulu kemudian diturunkan menggunakan rumus dasar 3 dan 2.
a). $ y = (x^2-1)(2x^3 + x) $
Misalkan :
$ U = (x^2-1) \rightarrow U^\prime = 2x - 0 = 2x $
$ V = (2x^3 + x) \rightarrow V^\prime = 6x^2 + 1 $
Sehingga turunannya :
$ \begin{align} y & = UV \\ y^\prime & = U^\prime . V + U. V^\prime \\ & = 2x. (2x^3 + x) + (x^2-1).( 6x^2 + 1) \\ & = 4x^4 + 2x^2 + ( 6x^4 + x^2 - 6x^2 - 1 ) \\ & = 10x^4 - 3x^2 - 1 \end{align} $
Jadi, turunannya adalah $ y^\prime = 10x^4 - 3x^2 - 1 $

4). Tentukan turunan fungsi $ y = \frac{x^2 + 2}{3x - 5} $ ?

Penyelesaian :
Kita gunakan rumus dasar 5).

Misalkan :
$ U = x^2 + 2 \rightarrow U^\prime = 2x + 0 = 2x $
$ V = 3x - 5 \rightarrow V^\prime = 3 - 0 = 3 $
Sehingga turunannya :
$ \begin{align} y & = \frac{U}{V} \\ y^\prime & = \frac{U^\prime . V - U. V^\prime}{V^2} \\ & = \frac{2x . (3x - 5) - (x^2 + 2). 3}{(3x - 5)^2} \\ & = \frac{6x^2 - 10x - 3x^2 - 6}{9x^2 -30x + 25} \\ & = \frac{3x^2 - 10x - 6}{9x^2 -30x + 25} \end{align} $
Jadi, turunannya adalah $ y^\prime = \frac{3x^2 - 10x - 6}{9x^2 -30x + 25} $

Demikianlah Rumus Dasar Menyelesaikan Soal-Soal Turunan Fungsi, semoga tulisan sederhana ini bermanfaat bagi yang sedang membutuhkannya.

Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan

Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan - Matematika Ku Bisa - Turunan fungsi $f(x)\,$ di $x=a\,$ dinotasikan dengan $f^\prime (a) \, $ , didefinisikan sebagai:

$ f^\prime (a) = \displaystyle \lim_{ \Delta x \to 0 } \frac{f(a+\Delta x ) - f(a)}{\Delta x} \, \, $ jika limitnya ada.

atau bisa ditulis : $ f^\prime (a) = \displaystyle \lim_{ h \to 0 } \frac{f(a+ h ) - f(a)}{h} \, \, $ jika limitnya ada.

Bentuk $ f^\prime (a) \, $ dibaca " $ f \, $ aksen $ \, a $ ". Jika kita tuliskan $ x = a + h \, $ , maka $ h = x - a \, $ dan untuk $ h \to 0 \, $ maka $ x \to a $ . Sehingga definisi limit di atas bisa juga ditulis:

$ f^\prime (a) = \displaystyle \lim_{ h \to 0 } \frac{f(a+ h ) - f(a)}{h} = \displaystyle \lim_{ x \to a } \frac{f( x ) - f(a)}{x-a} $

Notasi Turunan

Turunan pertama dari $ y = f(x) \, $ di notasikan: $ f^\prime (x) \, $ atau $ y^\prime $
Turunan kedua dari $ y = f(x) \, $ di notasikan : $ f^{\prime \prime} (x) \, $ atau $ y^{\prime \prime} $
dan seterusnya.

Turunan pertama dari $ y = f(x) \, $ di notasikan: $ \frac{df(x)}{dx} \, $ atau $ \frac{dy}{dx} $
Turunan kedua dari $ y = f(x) \, $ di notasikan: $ \frac{d^2f(x)}{(dx)^2} \, $ atau $ \frac{d^2y}{(dx)^2} $
dan seterusnya.

Definisi atau pengertian Turunan Fungsi Secara Umum

Turunan fungsi $ f(x) \, $ untuk semua $ x \, $ dinotasikan dengan $ f^\prime (x) \, $ , didefinisikan sebagai:

$ f^\prime (x) = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \, \, $ jika limitnya ada.

Bentuk $ f^\prime (x) \, $ dibaca " $ f \, $ aksen $ \, x $ ".

Contoh Soal:
Tentukan turunan dari $ f(x) \, $ atau $ f^\prime (x) \, $ dari masing-masing fungsi berikut:
a). $ f(x) = 5x - 2 $
b). $ f(x) = x^2 + 2x $
c). $ f(x) = \sin x $

Penyelesaian: (Bentuk $ f^\prime (x) \, $ artinya turunan dari fungsi $ f(x) $)

a). $ f(x) = 5x - 2 $
$ \begin{align} f^\prime (x) & = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{(5(x+ h) - 2) - (5x-2)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{(5x + 5h - 2) - (5x-2)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{5h}{h} \\ & = \displaystyle \lim_{ h \to 0 } 5 \\ & = 5 \end{align} $
Jadi, turunannya : $ f^\prime (x) = 5 $

b). $ f(x) = x^2 + 2x $
$ \begin{align} f^\prime (x) & = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{ [(x+ h)^2 +2(x+ h)] - (x^2 + 2x) }{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{ [x^2 + 2xh + h^2 + 2x + 2h] - (x^2 + 2x) }{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{ h^2 + 2xh + 2h }{h} \\ & = \displaystyle \lim_{ h \to 0 } h + 2x + 2 \\ & = 0 + 2x + 2 \\ & = 2x + 2 \end{align} $
Jadi, turunannya : $ f^\prime (x) = 2x + 2 $

c). $ f(x) = \sin x $
¤ Ingat bentuk:
$ \sin (A+B) = \sin A \cos B + \cos A \sin B $.
Sehingga:
$ \begin{align} f(x+h) & = \sin (x + h) \\ & = \sin x \cos h + \cos x \sin h \end{align} $

¤ Rumus:
$ \cos x = 1 - 2\sin ^2 \frac{1}{2} x $
Sehingga :
$ \cos h = 1 - 2\sin ^2 \frac{1}{2} h $.

¤Bentuk :
$ \begin{align} \cos h - 1 & = (1 - 2\sin ^2 \frac{1}{2} h) - 1 \\ & = - 2\sin ^2 \frac{1}{2} h \\ & = - 2\sin \frac{1}{2} h . \sin \frac{1}{2} h \end{align} $

¤ Menentukan penyelesaiannya:
$ \begin{align} f^\prime (x) & = \displaystyle \lim_{h \to 0 } \frac{f(x+h) - f(x) }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ (\sin x \cos h + \cos x \sin h) - \sin x }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ (\sin x \cos h - \sin x ) + \cos x \sin h }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin x ( \cos h - 1 ) + \cos x \sin h }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin x ( \cos h - 1 ) }{h} \\ & + \displaystyle \lim_{h \to 0 } \frac{ \cos x \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ ( \cos h - 1 ) }{h} \\ & + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ - 2\sin \frac{1}{2} h . \sin \frac{1}{2} h }{h} \\ & + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ \sin \frac{1}{2} h }{h} . (- 2\sin \frac{1}{2} h ) \\ & + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \frac{1}{2}. (- 2\sin \frac{1}{2} 0 ) \\ & + \cos x . 1 \\ & = \sin x . \frac{1}{2}. (- 2\sin 0 ) + \cos x \\ & = \sin x . \frac{1}{2}. (0 ) + \cos x \\ & = 0 + \cos x \\ & = \cos x \end{align} $

Jadi, turunannya : $ f^\prime (x) = \cos x \, $ untuk $ f(x) = \sin x $

Demikianlah cara Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan. Semoga tulisan sederhana ini bermanfaat bagi pembaca sekalian.

Contoh Soal Integral Parsial

Integral parsial digunakan apabila integral subsitusi tidak bisa digunakan. Integral parsial dirumuskan sebagai:





Contoh Soal:


Penyelesaian:

Kita ambil x sebagai U yaitu U=x maka du=dx

Otomatis Cos (x) dx sebagai dv atau dv = cos (x) dx maka v=sin (x)

Jadi





=x Sin(x) + Cos(x) + C

Cara Mudah dan Cepat Menyelesaikan Soal Limit Fungsi Aljabar dan Trigonometri

Ada Cara yang Cepat Menyelesaiakan Soal Limit Fungsi menggunakan Aturan L' Hopital atau Teorema L'Hopital dan tentunya mempunyai syarat penggunaan. Rumus Cepat Menyelesaikan Soal Limit yang satu ini sangat bermanfaat bagi para siswa yang akan melaksanakan Ujian Sekolah atau Ujian Nasional. Terkecuali bagi Mahasiswa Pendidikan Matematika, Teorema L'Hopital dipelajari dan dibuktikan kebenaraannya dalam Materi Kalkulus Jilid 2 (Bentuk Tak Tentu dan Integral Tak Wajar).

Pada Matematika SMA konsep tentang Limit mencakup limit fungsi di satu titik, limit fungi di titik 0, dan limit fungsi di tak hingga dengan fungsinya aljabar dan trigonometri.

Untuk menyelesaikan soal-soal Limit tersebut, pada umumnya dilakukan dengan cara Subsitusi. Jika hasil yang diperoleh berupa bilangan tertentu maka itulah hasil dari soal tersebut.

Contoh : Limit dari fungsi f(x)=2x-1 untuk x mendekati 2 ditulis dengan cara Subsitusi adalah


Subsitusi x=2 pada f(x) yaitu f(2)=2(2)-1=3

Jika hasil subsitusi mendapatkan suatu bentuk Tak-Tentu seperti

(nol per nol)
(tak-hingga per tak-hingga)
(tak-hingga dikurang tak-hingga)
dan bentuk tak-tentu lainnya maka dapat dilakukan dengan salah satu cara berikut ini.

1. Memfaktorkan
2. Mengalikan dengan Sekawan
3. Menurunkan (Aturan L'Hopital)

1. Memfaktorkan

Contoh:
dibaca "Limit fungsi dari f(x)= untuk x mendekati 2" adalah....
Penyelesaian:
Jika kita menggunakan cara subsitusi maka hasilnya adalah bentuk tak tentu 0/0. Selesaikan dengan cara memfaktorkan terlebih dahulu yaitu:
=(x+2)(x-2) sehingga
$\lim_{x \rightarrow 2} \frac{x^2 -4}{x-2}$
$=\lim_{x \rightarrow 2} \frac{(x+2)(x-2)}{x-2}$
$=\lim_{x \rightarrow 2} x+2$
$=(2)+2=4$
Jadi limit fungsi dari f(x)= untuk x mendekati 2 adalah 4.

2. Mengalikan dengan Sekawan

Contoh: Limit fungsi dari f(x)= untuk x mendekati 1 adalah...
Penyelesaian:
Jika dilakukan dengan Subsitusi maka mendapatkan hasil 0/0.
Jadi dilakukan dengan cara mengalikan Penyebut dengan sekawannya.

$\lim_{x \rightarrow 1} \frac{x-1}{\sqrt{x}-1}$
$=\lim_{x \rightarrow 1} \frac{x-1}{\sqrt{x}-1} \times \frac{\sqrt{x} +1}{\sqrt{x} +1}$
$=\lim_{x \rightarrow 1} \frac{(x-1)(\sqrt{x} +1)}{x-1}$
$=\lim_{x \rightarrow 1} \sqrt{x} +1$ $=\sqrt{(1)} +1$ $=1+1=2$

jadi, jawaban soal limit di atas adalah 2

3. Dengan Menggunakan Aturan L'Hopital

Kita ambil saja contoh 1 di atas. Karena hasil subsitusi merupakan bentuk tak tentu jenis 0/0 maka cara menyelesaikannya yaitu menurunkannya terlebih dahulu, menurunkan pembilannya dan penyebutnya.



jadi jawaban untuk limit fungsi dari f(x)=2x untuk x mendekati 2 adalah f(2)=2(2)=4 (soal no.1 dengan cara aturan L'Hopital)

Gimana udah mengerti Cara Mudah Menyelesaikan Soal Limit Fungsi Aljabar dan Trigonometri ?

Integral Subsitusi Versi 2

Assalamu'alaikum pecinta Matematika Ku Bisa Blog :D



Kali ini saya akan membahas bagaimana menyelesaikan soal-soal integral fungsi t menggunakan Integral Subsitusi sederhana berikut ini. Pada pembahasan sebelumnya, saya telah membahas bagaimana menyelesaikan soal-soal integral fungsi trigonometri versi 1 dengan judul artikel Penyelesaian Soal Integral Trigonometri Dengan Metode Substitusi . Jadi tolong dibaca terlebih dahulu agar pembahasan ini dapat dimengerti oleh Pecinta Kalkulus sekalian. Oke langsung saja, judul artikel kali ini adalah Integral Subsitusi  Versi 2.

Integral Subsitusi Versi 2

Jika kita membuat subsitusi x=g(x), kemudian di diferensialkan menjadi dx=g’(x) du, dan misalkan soalnya adalah ∫ f(x)dx , dengan f(x) suatu fungsi aljabar atau trigonometri dll. Maka berdasarkan pemisalan yang ada,

 maka:
 ∫ f(x)dx= ∫f[g(u) ] g^' (u)du.
Contoh: Selesaikan ∫ x√(x+1 )dx

Penyelesaian:

Jika kita membuat subsitusi u=√(x+1) , x=u^2-1, maka dx=2u du

 Jadi, ∫x√(x+1 ) dx

=∫(u^2-1)2u^2 du

=∫2u^4 du-∫2u^2 du

=2/5 u^5-2/3 u^3+k

=2/5 (x+1)^(5/2 ) -2/3 (x+1)^(3/2)+k


Keterangan: ^=pangkat

Seperti itu cara menyelesaikan Integral Subsitusi  Versi 2 jika versi 1 tidak bisa dilakukan.

SEMOGA BERMANFAAT

Turunan Berantai dalam Notasi Leibniz

Turunan Berantai dalam Notasi Leibniz memang sangat mudah untuk dipahami ketimbang harus menggunakan notasi f'(x) , y', atau Dx. Tahu gak apa artinya notasi-notasi ini?

f'(x) : Turunan pertama fungsi f(x) terhadap x
y' : Pada umumnya diartikan sebagai "Turunan y terhadap x". Kekurangan menggunakan notasi ini karena kurang jelas apakah y diturunkan terhadap x atau terhadap u.
Dx : Artinya Turunan terhadap x, misalnya Dx[z] artinya turunan Z terhadap x. Du[y] artinya turunan y terhadap U. Penggunaan notasi ini lebih baik dari pada f'(x) atau y' (dibaca y aksen).

Contoh Soal:
Jika carilah Dx[y]
Penyelesaian:

Kita misalkan maka Dx[U]=4x-4. Setelah kita misalkan tadi persamaannya menjadi maka
Jadi,


Lalu bagaimana Turunan Berantai dalam Notasi Leibniz untuk menyelesaikan soal di atas ? Untuk menyelesaikan soal di atas dengan menggunakan notasi Leibniz untuk turunan, terlebih dahulu kita harus mengerti arti dari:
: Turunan pertama y terhadap x
d[f(x)]/dx : Turunan pertama fungsi f(x) terhadap x
dy/du : Turunan pertama y terhadap u
Setelah anda faham hal tersebut selanjutnya mari kita lihat penggunaannya dalam menyelesaikan Turunan Berantai dalam Notasi Leibniz tadi sbb:

Misal : dan du/dx=4x-4
Maka :
Jadi:


Lebih mudah untuk dipahami karena Demikian Untuk Turunan Berantai dalam Notasi Leibniz
Sumber: Kalkulus Purcell Edisi 8 Jilid 1

Penyelesaian Soal Integral Trigonometri Dengan Metode Substitusi

Penyelesaian Soal Integral Trigonometri Dengan Metode Substitusi

Integral merupakan bagian dari bahasan Kalkulus-Matematika. Definisi Integral diperoleh dari konsep Anti-Turunan yang kemudian dari definisi tersebut diturunkan Teorema-Teorema Anti-Turunan atau Teorema Dasar Integral misalnya Aturan Pangkat, dll. seperti yang kita bahas dalam tulisan ini, Integral Subsitusi digunakan pada integral fungsi yang terdiri dari 2 (dua) fungsi misalkan f(x) dan g(x) yang saling diperkalikan dengan syarat salah satu fungsi adalah turunan dari fungsi yang lainnya. Teorema Integral Subsitusi ini maupun Teorema lainnya perluh untuk dibuktikan yang telah dibahas pada tulisan Cara Membuktikan Teorema-Teorema dalam Kalkulus. Integral Subsitusi terdiri dari 2 (dua) Versi yaitu Subsitusi versi 1 dan Integral Subsitusi Versi-2

 Subsitusi versi 1

Jika kita membuat subsitusi untuk u=g(x) maka du=g’(x) dx. Artinya fungsi dari x digantikan dengan peubah yaitu U.

Contoh soal : ∫ sin 3x cos 3x dx

Penyelesaian:

U = sin 3x berarti kita memilih g(x)=sin 3x. Kemudian U kita turunkan dan diperoleh seperti dibawah.

 ∫ sin 3x cos 3x dx

Missal: U=sin 3x
Maka: du=3 cos3x dx

Sekarang kita masukkan “U” dan “dx” ke dalam soalnya atau dengan kata lain mengganti semua peubah x ke peubah u.Yaitu:

= ∫ sin 3x cos 3x dx
=1/3 ∫ sin 3x.3cos3x dx
=1/3 ∫ U.du                Nah, sudah didapatkan integral dalam bentuk U dan sekarang tinggal kita integralkan.
 = ∫ U du
=
Hampir selesai sekarang, tinggal mengganti U dengan sin 3x ( ingat U = sin 3x, permisalan kita di awal).
=


Selesai sampai disini dulu sebagai latihan kerjakan soal di bawah ini:

Kategori Lainnya

Contact Form

Name

Email *

Message *

Copyright © Matematika Ku Bisa. All rights reserved. Template by CB. Theme Framework: Responsive Design