Belajar Matematika Online

Hotel Choices in Las Vegas Las Vegas Vacations allow visitors to explore one of Nevada's most populated cities. Tucked into the beautiful scenery of Clark County, the city is filled with gorgeous nature surroundings. This city is in the middle of the arid Mojave Desert. It is commonly called The Entertainment Capital of the World. This title refers to two important features of this location. Here is where vacationers can find a wide array of entertainment choices. Anything from boxing matches, to concerts take place in the great city. Another of the popular entertainment activities is gaming. In fact, this city is known around the world for being the home of the best casinos in the world. People from every country travel here each year, to participate in the gaming choices here. Black Jack, Roulette, and coin machines are some of the most popular casino attractions. One of the helpful things about this city makes it unique. When planning vacations it is important to note, that most hotels here have on site casinos. There are a large number of luxury hotels and resorts located here. Staying in any of these is an adventure in itself. They provide world-class accommodations. Many of these hotels and resorts have shopping, dining, and gaming opportunities, all under one roof. They understand the importance of providing their guests with a fantastic vacation. For this reason, customer service is this town is splendid. A wonderful hotel choice is the Bellagio. This location is known around the world for its elegant style and quality offerings. The Bellagio has been featured in the movies, as well as, on television. Most people recognize this hotel because of its amazing fountain display. The Fountains at Bellagio stretch the length of a quarter mile, in front of its immense lake. These fountains are best viewed at the nightly music and light show. Tourists from around the world come to witness this great sight. The Bellagio is also known for providing one of the world's most famous casino experiences. Hotels like this one goes beyond guests' expectations in supply awesome vacations. The Las Vegas Hilton is another fine hotel choice for vacationers. This chain is recognized around the world for providing guests with excellent service. The hotel has both rooms and suites to choose from. There are standard and grand hotel rooms. And there are standard and executive suites at this location. The amenities here also make your stay special. You will find fitness services, a spa, tennis courts, a pool, and an on site salon. Everything guests may need or want can be found right here. There are also diverse restaurants to choose from at the Las Vegas Hilton. Guests have a choice of fine or casual dining restaurants. They may even sample many of the choices from the hotel's Quick Eats program. For vacationers who love to shop, they will find some great shops in this location, as well. Choosing the right hotel is paramount when it comes to planning your vacation. Finding those along the Vegas Strip is a good way to be near the action. Some visitors will prefer to be in accommodations which display better views of the mountains near the city. It doesn't matter where you lodge in Las Vegas. You trip here will be outstanding. Las Vegas vacations are one of the most popular destinations in the world. When looking at vacation packages and travel deals to Las Vegas bundle and save your packages for better deals on your vacations. Buying the car, flight, hotel, and activities all at once will increase the savings on your trip. hotel in nevada las vegas treasure island hotel in las vegas nevada w hotel in las vegas nevada hotel in las vegas nevada on the strip hotel las vegas nevada strip plaza hotel in las vegas nevada excalibur hotel in las vegas nevada south point hotel in las vegas nevada southpoint hotel in las vegas nevada westgate hotel in las vegas nevada luxor hotel in las vegas nevada hotel in north las vegas nevada orleans hotel in las vegas nevada hotel rooms in las vegas nevada stratosphere hotel in las vegas nevada rio hotel in las vegas nevada four queens hotel in las vegas nevada the d hotel in las vegas nevada hotel deals in las vegas nevada aria hotel in las vegas nevada marriott hotel in las vegas nevada tropicana hotel in las vegas nevada wynn hotel in las vegas nevada mirage hotel in las vegas nevada monte carlo hotel in las vegas nevada golden nugget hotel in las vegas nevada silverton hotel in las vegas nevada elara hotel in las vegas nevada wyndham hotel in las vegas nevada hooters hotel in las vegas nevada tuscany hotel in las vegas nevada gold coast hotel in las vegas nevada mardi gras hotel in las vegas nevada mgm hotel in las vegas nevada mgm grand hotel in las vegas nevada harrah's hotel in las vegas nevada linq hotel in las vegas nevada hotels in las vegas nevada off the strip grandview hotel in las vegas nevada kid friendly hotel in las vegas nevada planet hollywood hotel in las vegas nevada trump hotel in las vegas nevada westin hotel in las vegas nevada hotel suites in las vegas nevada palazzo hotel in las vegas nevada red rock hotel in las vegas nevada palace station hotel in las vegas nevada new orleans hotel in las vegas nevada palms hotel in las vegas nevada hotel rates in las vegas nevada sls hotel in las vegas nevada d hotel in las vegas nevada best western hotel in las vegas nevada hotels in las vegas nevada near the strip m hotel in las vegas nevada best hotel deals in las vegas nevada el cortez hotel in las vegas nevada hotel reservations in las vegas nevada riviera hotel in las vegas nevada all inclusive hotel in las vegas nevada super 8 hotel in las vegas nevada rio all suites hotel in las vegas nevada la quinta hotel in las vegas nevada sahara hotel in las vegas nevada suncoast hotel in las vegas nevada hotel jobs in las vegas nevada new york hotel in las vegas nevada new hotel in las vegas nevada newest hotel in las vegas nevada lucky dragon hotel in las vegas nevada radisson hotel in las vegas nevada aladdin hotel in las vegas nevada grand hotel in las vegas nevada renaissance hotel in las vegas nevada holiday inn hotel in las vegas nevada sheraton hotel in las vegas nevada hotel galaxy in las vegas nevada aliante hotel in las vegas nevada the hotel in las vegas nevada hotel las vegas nevada luxor encore hotel in las vegas nevada days inn hotel in las vegas nevada downtown grand hotel in las vegas nevada texas hotel in las vegas nevada mandalay hotel in las vegas nevada longhorn hotel in las vegas nevada most expensive hotel in las vegas nevada hotel furniture liquidators in las vegas nevada marriott hotel in las vegas nevada on the strip howard johnson hotel in las vegas nevada delano hotel in las vegas nevada directions to excalibur hotel in las vegas nevada pyramid hotel in las vegas nevada hotel taxes in las vegas nevada stardust hotel in las vegas nevada what's the biggest hotel in las vegas nevada hilton grand hotel in las vegas nevada largest hotel in las vegas nevada loews hotel in las vegas nevada
Hasil Pencarian di Blog Matematika Ku Bisa
Showing posts with label Persamaan Diferensial. Show all posts
Showing posts with label Persamaan Diferensial. Show all posts

Persamaan Diferensial Reduksi Terpisahkan (PD Homogen)

Pada pembahasan sebelumnya, kita telah mempelajari persamaan diferensial tingkat 1 dengan variabel terpisah yang dapat diselesaikan dengan metode integrasi secara langsung. Pada kesempatan ini, kita akan mempelajari secara khusus keberadaan suatu persamaan diferensial yang variabelnya dapat dipisahkan. Persamaan tersebut disebut persamaan diferensial homogen.

Pengertian: Suatu fungsi F(x,y) adalah fungsi homogen berderajat n dalam x dan y jika $F( \lambda x, \lambda y)= \lambda ^n F(x,y)$. Jika diberikan PD dengan
$M(x,y) \ dx + N(x,y) \ dy=0 \\ \Leftrightarrow \frac{dy}{dx} = - \frac{M(x,y)}{N(x,y)} $
disebut PD dengan koefisien homogen jika M(x,y) dan N(x,y) adalah fungsi homogen berderajat sama, katakan n.

Karena PD homogen maka:
$\begin{align} \frac{dy}{dx} &= - \frac{M(x,y)}{N(x,y)} \\ &= - \frac{(\frac{1}{x})^nM(\frac{1}{x}.x, \frac{y}{x})}{(\frac{1}{x})^nN(\frac{1}{x}.x, \frac{y} {x})} \\ &= - \frac{x^{-n}M(1, \frac{y}{x})}{x^{-n}N(1, \frac{y}{x})} \\ &= \frac{M(1, \frac{y}{x})}{N(1, \frac{y}{x})} \\ \frac{dy}{dx} &= f(\frac{y}{x}) \end{align} $

sehingga digunakan transformasi $y=ux$ atau jika $\frac{dy}{dx} = - \frac{y^n}{y^n} \frac{M( \frac{x}{y}, 1)}{N(\frac{x}{y},1)} $ digunakan transformasi $x=vy $.

Contoh soal:
Selesaikan $2x \ dy - 2y \ dx = \sqrt{x^2+4y^2} \ dx $

Solve:
Kita ubah bentuknya menjadi $M \ dx + N \ dy=0$, hasilnya sebagai berikut.
$(\sqrt{x^2+4y^2} + 2y) \ dx - 2x \ dy=0$

Maka diketahui:
$M = \sqrt{x^2+4y^2} + 2y$ dan $N= -2x $

Kita periksa apakah homogen.
(Diberikan kepada pembaca untuk menunjukannya)

Karena PD homogen, gunakan transformasi $y=ux $ atau $x=vy $. Misal gunakan $y=ux $ dimana $\frac{dy}{dx} = x \ du+ u \ dx $

Maka hasil transformasinya menjadi persamaan berikut ini.

$ \frac{1}{x} \ dx - \frac{2}{\sqrt{1+4u^2}} \ du=0$

Dengan mengintegralkan diperoleh:

$1+4kux -k^2x^2=0$ (k bilangan konstan)

Kita ganti u dengan $ \frac{y}{x} $. Jadi, solusi umumnya adalah $1+4ky - k^2x^2=0$

Persamaan Diferensial Metode Integrasi

Kita telah membahas materi-materi PD Linier Tingkat satu, baik yang bentuknya umum maupun yang bentuknya khusus. Bentuk khususnya yaitu PD Bernouli dan PD Riccati. Pada kesempatan ini, kita akan membahas suatu metode yang disebut Metode Integrasi dalam menyelesaikan PD Tingkat 1, baik yang linier ataupun yang non linier.

Apa sih yang dimaksud dengan metode integrasi, jika dilihat dari kata "integrasi" maka ini berarti menggunakan integral. Benar nggk tuh? Kalau kita pikir-pikir, bukannya semua proses penyelesaian persamaan diferensial pasti melibatkan integrasi? Maka Kita perlu memahami maksud dari "metode integrasi" ini.

Metode integrasi dapat dilakukan apabila bentuk PDnya merupakan PD yang variabel bebas dan terikatnya terpisahkan. Maksud dari terpisahkan ini adalah masing-masing variabel tidak bersama pada suatu suku dalam persamaan tersebut misalnya satu variabelnya berada di satu ruas (misalnya ruas kiri) sedangkan variabel yang lainnya berada di ruas yang lain (berarti di ruas kanan) atau sama-sama di ruas yang sama tetapi dipisahkan oleh operasi jumlah atau kurang. Faham, kan? Namun, tidak semua PD tingkat satu dapat terpisahkan. (Jadi ada PD yang variabel x dan y itu gak bisa dipisahkan, kayak dia dan kamu, iya kamu, cie..!)

Kita dapat memanipulasi secara aljabar suatu PD yang variabelnya dapat dipisahkan, menjadi bentuk:
g(y) dy = f(x) dx
sehingga diperoleh solusi umum:
$ \int g (y) dy = \int f (x) dx$
Ada juga bentuk lain yang lebih umum:
$f_1 (x)g_1 (y) \ dx= f_2 (x)g_2 (y) \ dy=0$
atau
$M (x,y) \ dx + N (x,y)\ dy =0$
dapat dibentuk menjadi persamaan difernsial dengan variabel terpisah dengan menggunakan faktor integrasi:
$\frac{1}{g_1 (y)f_2 (x)} $
Sehingga dihasilkan:
$\begin{align} \frac{f_1 (x)}{f_2 (x)} \ dx + \frac{g_2(y)}{g_1(y)} \ dy &= 0 \\ \Leftrightarrow \int \frac{f_1 (x)}{f_2 (x)} \ dx + \int \frac{g_2 (y)}{g_1 (y)} \ dy &=0 \end{align} $

Contoh:
Selesaikan $xy \ dx + (1+x^2) \ dy = 0$ dengan metode integrasi!

Solusi: Faktor integrasinya adalah $\frac{1}{y (1+x^2)}$
Sehingga, $\begin{align} & \frac{1}{y(1+x^2)}[xy \ dx+(1+x^2) \ dy] =0 \\ & \leftrightarrow \frac{x}{1+x^2} \ dx+ \frac{1}{y} \ dy=0 \\ & \leftrightarrow \int \frac{x}{1+x^2} \ dx+ \int \frac{1}{y} \ dy=k \\ \frac{1}{2} ln|1+x^2|+ln|y|=C \\ & \leftrightarrow ln (1+x^2)^{\frac{1}{2}}y = ln \ e^c \\ & \leftrightarrow \sqrt{1+x^2} y = e^c \end{align} $

Jadi, solusi umum persamaan diferensial tersebut adalah $y = \frac{e^c}{\sqrt{1+x^2}} $

Persamaan Diferensial Riccati

PD Riccati merupakan salah satu PD khusus yang dapat diubah ke PD Linier Tingkat 1 sama seperti PD Bernoulli, juga dapat diubah ke PD Linier Tingkat 1. Secara khusus kita telah membahasnya pada Persamaan Diferensial Orde Satu Bernoulli. Adapun bentuk umum PD Riccati adalah sebagai berikut.
$\frac{dy}{dx}=P(x)y^2+Q(x)y+R(x)$
Jika $R(x)=0$, maka PD menjadi PD Bernoulli. Jika $R(x) \neq 0$ maka PD tersebut diubah ke PD Linier Tingkat 1 dengan cara berikut ini.
  1. Ambil satu penyelesaian khusus $y=u(x) $ (biasanya dalam soal sudah diketahui). Karena itu, dipunyai $\frac{dy}{dx}=P(x)u^2+Q(x)u+R(x)$.
  2. Substitusikan $y=u+ \frac{1}{z}$ dengan derivatifnya $\frac{dy}{dx} = \frac{du}{dx} - \frac{1}{z^2} \frac{dz}{dx}$ ke persamaan diferensial Riccati, maka diperoleh:
$\frac{dz}{dx}+[2uP(x)+Q(x)]z=-P(x)$
Contoh: Selesaikan persamaan $\frac{dy}{dx}=-2-y+y^2$ dengan $y=2$ adalah penyelesaian khususnya!

Penyelesaian: Sudah jelas bahwa persamaan tersebut termasuk dalam PD Riccati, kita nyatakan dalam bentuk yang ekuivalen sebagai berikut.

$ \begin{align} & \frac{dy}{dx} =-2-y+y^2 \\ \Leftrightarrow & \frac{dy}{dx} =y^2-y-2  \end{align} $

Dari bentuk terakhir di atas maka diketahui $P(x)=1$, $Q(x)= -1$ dan $R(x)=-2$. Dari soal diketahui bahwa $u(x)=2$. Dengan menggunakan transformasi $y=u+ \frac{1}{z} \Leftrightarrow y=2+ \frac{1}{z}$ maka persamaan direduksi menjadi:

$ \begin{align} \frac{dz}{dx}+[2uP(x)+Q(x)]z &= -P(x) \\ \Leftrightarrow  \frac{dz}{dx}+[2(2)(1)-1]z &= -1 \\ \Leftrightarrow \frac{dz}{dx}+3z &= -1 \end{align}$

Bentuk terakhir ini adalah PD linier tingkat 1 yang telah dibahas pada tulisan Persamaan Diferensial Linier Tingkat 1 dengan Faktor integrasi:

$ \begin{align} e^{ \int 3  \ dx} &= e^{3x}  \end{align} $.

Sehingga penyelesaian dari $ \frac{dz}{dx}+3z = -1$ adalah:

$ \begin{align} z &= \frac{1}{e^{3x}}( \int (-1)e^{3x} \ dx) \\ &= e^{-3x}(- \int e^{3x} \ dx) \\ &=e^{-3x}(- \frac{1}{3}e^{3x}+k) \\ \Leftrightarrow \frac{1}{y-2} &= ke^{-3x}-\frac{1}{3} \\ \Leftrightarrow y-2 &= \frac{1}{ke^{-3x}-\frac{1}{3}} \\ \Leftrightarrow y &= 2+\frac{1}{ke^{-3x}- \frac{1}{3}} \end{align} $

Jadi, $y=2+ \frac{1}{ke^{-3x}- \frac{1}{3}}$ adalah penyelesaian dari $\frac{dy}{dx}=-2-y+y^2$.
    

Persamaan Diferensial Orde Satu Bernoulli

PD Bernoulli memiliki bentuk umum 
$\frac{dy}{dx}+p(x)y=r(x)y^n \ \ ; \ n \neq 0$
Untuk $n \neq 1$, kita dapat mentransformasi bentuk tersebut menjadi PD Linier Tingkat 1 dengan menggunakan transformasi $z=y^{-n+1} $. Dari sini diketahui:
$\frac{dz}{dx}=(-n+1)y^{-n} \frac{dy}{dx} \Leftrightarrow \frac{dy}{dx} = \frac{y^n}{1-n} \frac{dz}{dx} $

Jika $\frac{dy}{dx}+p(x)y=r(x)y^n$ dikalikan dengan $(1-n)y^{-n} $ maka diperoleh:
$\frac{dz}{dx}+(1-n)p(x)z=(1-n)r(x) $
Contoh: Selesaikan persamaan $2xy \frac{dy}{dx}-y^2=x^2$

Penyelesaian: Untuk memperjelas bahwa persamaan tersebut termasuk dalam PD Bernoulli, kita nyatakan dalam bentuk yang ekuivalen sebagai berikut.

$ \begin{align} & 2xy \frac{dy}{dx}-y^2=x^2 \\ \Leftrightarrow & \frac{dy}{dx} - \frac{y^2}{2xy} = \frac{x^2}{2xy} \\ \Leftrightarrow & \frac{dy}{dx} - \frac{1}{2x} y = \frac{x}{2} y^{-1} \end{align} $

Dari bentuk terakhir di atas, diketahui $p(x)=- \frac{1}{2x} $, $ r (x)= \frac{x}{2}$ dan $n=-1$. (Dengan menggunakan transformasi $z=y^{-n+1}=y^{-(-1)+1}=y^2$ dan mengalikan $(1-n)y^{-n+1}=2y^2$ di kedua ruas PD Bernoulli di atas) Maka diperoleh:

$ \begin{align} \frac{dz}{dx}+(1-n)p(x)z &=(1-n)r(x) \\ \Leftrightarrow \frac{dz}{dx}+(1-(-1))(- \frac{1}{2x})z &=(1-(-1)) \frac{x}{2} \\ \Leftrightarrow \frac{dz}{dx}+2(- \frac{1}{2x})z &=2 ( \frac{x}{2}) \\ \Leftrightarrow \frac{dz}{dx} - \frac{1}{x}z &= x \end{align}$

Bentuk terakhir ini adalah PD linier tingkat 1 yang telah dibahas pada tulisan Persamaan Diferensial Linier Tingkat 1 dengan Faktor integrasi:

$ \begin{align} e^{ \int - \frac{1}{x}  \ dx} &= e^{-ln(x)} \\ &= e^{ln (x^{-1})} \\ &= x^{-1} \\ &= \frac{1}{x} \end{align} $.

Sehingga penyelesaian dari $ \frac{dz}{dx} - \frac{1}{x} z=x$ adalah:

$ \begin{align} z &= \frac{1}{ \frac{1}{x}}( \int x( \frac{1}{x}) \ dx)  \\ &= x ( \int 1 \ dx) \\ &= x (x+k) \\ &= x^2+kx \end{align} $

Jadi, 
$y^2=x^2+kx \Leftrightarrow y= \sqrt{x^2+kx} $

Persamaan Diferensial Linier Tingkat 1

Pengertian PD Linier Tingkat 1


Suatu persamaan diferensial tingkat 1 dikatakan linier dalam y jika tidak dapat memuat hasil kali, pangkat atau kombinasi non linier lainnya dari y atau y'. Bentuk umum dari PD linier tingkat (order) 1 diberikan sebagai berikut.
$y'+p(x)y=f(x) $
Cara Menyelesaikan PD Linier Tingkat 1

Jika $p(x)=0$ maka dapat diselesaikan dengan integrasi langsung, sedangkan jika $f(x)=0$ maka persamaan adalah  PD terpisahkan, yakni:

$\begin{align} y'+p(x)y &=0 \\ y' &= -p(x)y \\ \frac{dy}{dx} &= -p(x) \ dx \\ \frac{1}{y} \ dy &= -p(x) \ dx \\ \int \frac{1}{y} \ dy &= \int -p(x) \ dx \\  ln (y) &= - \int p(x) \ dx \\ y &= e^{- \int p(x) \  dx } \end{align}$

Jika $p(x) \neq 0$ dan $f(x) \neq 0$, untuk menentukan solusi PD linier tingkat 1 tersebut adalah sebagai berikut.

Misal $u(x)$ adalah suatu fungsi dalam x.

$\begin{align} y'+p(x)y=f(x) \\ \iff u(y'+py) &= uf \\ \iff uy'+upy' &= uf \\ \iff uy'+u'y-u'y+upy &= uf \\ \iff (uy)' - (u'y-upy) &= uf \\ \iff \frac{d(uy)}{dx} - y'(u'-up) &= uf \end{align} $

Agar bentuk di atas dapat menggunakan integrasi di kedua ruas, kita harus mencari $u(x)$ dengan memberikan ketentuan bahwa $u'-up=0$, sehingga:

$\begin{align} \frac{d(uy)}{dx} &= uf \\ d(uy) &= uf \ dx \\ \int d(uy) &= \int uf \ dx \\ uy &= \int uf \ dx \\ y &= \frac{1}{u} \int uf \ dx \end{align}$ 

Ini bisa terjadi jika $u(x)=e^{ \int p(x) \ dx} $ sehingga $u'(x)-u(x)p(x)=0$.

Selanjutnya $u(x)$ disebut faktor integrasi PD Linier Tingkat 1.

Contoh Soal Penyelesaian PD Linier Tingkat 1 dengan Faktor Integrasi

Selesaikan $dy/dx + y tan (x) = sec (x) $ !

Penyelesaian:
Diketahui $p(x)=tan (x)$ maka faktor integrasinya adalah:
$\begin{align} u(x) &= e^{ \int tan (x) \ dx} \\ &= e^{-ln (cos (x))} \\ &= sec (x) \end {align}$.

Jadi,
$\begin{align} y &= \frac{1}{u(x)} \int u(x)f(x) \ dx \\ &= \frac{1}{sec(x)} \int sec (x) \ sec (x) \ dx \\ &= \frac{1}{sec (x)} \int sec^2 (x) \ dx \\ &= \frac{1}{sec (x)} (tan (x)+k) \\ y &= sin (x)+k \ cos(x) \end{align}$.

k suatu bilangan konstan.

Persamaan Diferensial Tingkat 2

Pada bacaan sebelumnya di Persamaan Diferensial Tingkat 1, sudah dijelaskan bahwa tulisan-tulisan untuk kategori Persamaan Diferensial hanya membahas PD yang dapat diselesaikan secara eksak. Yang dimaksud PD Tingkat 2 juga sudah dibahas di situ, yaitu PD yang memuat derivatif dalam persamaan paling tinggi adalah 2. Silahkan baca Pengertian Persamaan Diferensial Biasa, Linier, dan Tak Linier.

Pada PD Tingkat 2, insya Allah dibahas materi-materi berikut ini.
  • PD Khusus Tak Linier
  • PD Linier Orde 2 Homogen dengan Koefisien Konstan
  • PD Linier Orde Dua Tak Homogen dengan Koefisien Konstan
Pada PD khusus tak linier kita menggunakan metode reduksi tingkat. Jadi, ada PD khusus tingkat 2 tak linier yang dapat direduksi menjadi PD tingkat 1 dengan melakukan pemisalan, sehingga dengan bentuk PD tingkat 1 nya tersebut, kita dapat menyelesaikannya dengan suatu cara yang ada pada PD tingkat 1. Kemudian menjadi sederhanalah penyelesaian PD tingkat 2 nya, dengan mengembalikan kembali variabel yang telah dimisalkan tadi.

Pada PD linier orde 2 homogen dengan koefisien konstan, kita menggunakan kriteria akar-akar persamaan karakteristik yang terdiri dari 3 kemungkinan, yaitu dua akar real berbeda, dua akar real kembar, dan dua akarnya kompleks.

Pada PD linier orde 2 tak homogen dengan koefisien konstan, solusi umnya berbentuk $y=y_c +y_p $ dengan $y_c $ solusi PD homogen dan $y_p $ adalah solusi khusus dari persamaan tak homogen. Adapun solusi khusus dapat dicari dengan 3 metode berikit ini.
  1. Metode Koefisien Tak-Tentu
  2. Metode Variasi Parameter
  3. Metode Operator
Untuk memudahkan para pembaca, pembahasan penyelesaian PD Tingkat 2 ini, saya beri label PD Tingkat 2.

Search for "Differential Equations":

Persamaan Diferensial Tingkat 1

Kita telah membahas pengertian persamaan diferensial, bagaimana membentuk persamaan diferensial, dan apa yang dimaksud dengan solusi persamaan diferensial pada tulisan Pengantar Persamaan Diferensial.

Ada persamaan diferensial biasa yang hanya menggunakan satu variabel bebas dan persamaan diferensial parsial yang sudah menggunakan lebih dari satu variabel bebas. Dari persamaan-persamaan diferensial tersebut ada yang bersifat linier dan tidak linier. Silahkan baca Pengertian Persamaan Diferensial Biasa, Linier, dan Tak Linier.

Jika dilihat dari persamaannya, suatu variabel tak bebasnya terturunkan 1 kali maka itu PD tingkat 1, jika terturunkan 2 kali maka disebut PD tingkat 2, dst.

Ketika membahas masalah persamaan dalam matematika, maka yang jadi inti pembahasannya adalah menemukan solusi dari persamaan tersebut. Ada persamaan yang bisa diselesaikan secara eksak dan tidak bisa diselesaikan secara eksak sehingga penyeleaaian persamaan tersebut menggunakan metode numerik. Maka dalam pembahasan materi Persamaan Diferensial pada blog ini, hanyalah materi-materi yang bisa diselesaikan secara eksak. Adapun jika ada yang menggunakan metode numerik, itu sebagai tambahan saja. Semoga dapat bermanfaat bagi kita semua.

Persamaan diferensial tingkat (orde) 1 yanga dibahas di sini adalah:
  • PD Linier Tingkat (Orde) 1
  • PD Tingkat Satu Khusus Diubah ke PD Linier Tingkat 1 yang meliputi PD Bernouli, PD Riccati
  • PD Tingkat 1 (Linier atau Tak-Linier) dengan Variabel Terpisah
  • PD Reduksi Terpisahkan (PD Homogen)
  • PD dengan M(x,y) dan N(x,y) Linier tetapi Tidak Homogen
  • PD Eksak
  • PD Tak Eksak
Itilah materi-materi yang insya Allah dibahas dalam blog ini, saya akan memberi label PD Tingkat 1 sehingga para pembaca bisa mememukan secara cepat materi-materi yang telah ditulis. Demikian tulisan kami ini, semoga bermanfaat.

Bacaan selanjutnya Persamaan Diferensial Tingkat 2.

Search for "Differential Equations"

Persamaan Diferensial Biasa Linier Orde n

Berdasarkan bacaan sebelumnya Pengertian Persamaan Diferensial Biasa, Linier, dan Tak Linier. Maka, kita dapat menuliskan bentuk umum PD Linier orde n sebagai berikut.

$a_n (x)y^{(n)}+a_{n-1}(x)y^{(n-1)}+... \\ +a_2 (x)y"+a_1 (x)y'+a_0 (x)y=f (x) $

Bila tidak dapat dinyatakan dalam bentuk di atas dikatakan PD tidak linier. Bila f(x)=0 maka disebut PD Linier Homogen sedangkan bila $f(x) \neq 0$ maka disebut PD Linier Tak-Homogen.

Untuk kasus n=1 disebut PD Linier Orde 1 dan untuk n=2 disebut PD Linier Orde 2.

$a_n(x) $ menyatakan fungsi ke-n dalam variabel x, yang dalam hal ini berkedudukan sebagai koefisien. Apabila $a_n(x) $ fungsi konstan maka disebut PD Linier dengan Koefisien Konstan.

Misal diberikan fungsi $y=sin \ x - cos \ x+1$. Bila dilakukan penurunan sebanyak dua kali, yakni $y'=cos  \ x+ sin \ x $ dan $y"=-sin \ x+ cos \ x $ diperoleh hubungan $y"+y=1$ (PD Linier tak Homogen orde 2 dengan koefisien konstan).

Cara memperoleh hubungan tersebut, telah dibahas pada tulisan Pengantar Persamaan Diferensial mengenai bagaimana menyusun persamaan diferensial biasa.

Fungsi $y=sin  \ x - cos \ x +1$ disebut solusi PD $y"+y=1$. Pertanyaan yang muncul kemudian adalah jika diberikan suatu PD linier orde n, bagaimana cara mendapatkan solusinya?  Penyelesaian PD Linier orde n, kita bahas terpisah pada tulisan lain dengan memberikan judul tersendiri dalam dua bahasan, yaitu bagaimana menyelesaikan PD Linier Orde 1 dan PD Linier Orde 2. Silahkan baca selanjutnya berikut ini.
  1. Persamaan Diferensial Tingkat 1 ✔
  2. Persamaan Diferensial Tingkat 2
Search for "Differential Equations"

Pengertian Persamaan Diferensial Biasa, Linier, dan Tak Linier

Bacaan sebelumnya Masalah Syarat Awal dan Syarat Batas. Pada tulisan tersebut dijelaskan bahwa dalam pemodelan fenomena perubahan dunia nyata, syarat awal sering dikaitkan dengan variabel waktu sedangkan syarat batas sering dikaitkan dengan variabel posisi. Jika melibatkan keduanya, membentuk persamaan diferensial.

Pada tulisan kali ini, kita akan membahas pengertian persamaan diferensial biasa, persamaan diferensial linier dan tak linier beserta dengan contohnya.

Pengertian Persamaan Diferensial Biasa


Persamaan diferensial biasa (PDB) adalah suatu persamaan diferensial yang melibatkan hanya satu variabel bebas. Jika diambil y(x) suatu fungsi dengan y disebut variabel tak bebas dan x variabel bebas, maka suatu persamaan diferensial biasa dapat dinyatakan dalam bentuk:

$F(x, \ y, \ y", \ ... \ y^{(n)})=0$

Order dari suatu PDB didefinisikan sebagai tingkat dari derivatif tertinggi yang muncul dalam persamaan diferensial. Derajat dari suatu PD adalah pangkat tertinggi dari suku derivatif tertinggi yang muncul dalam PD.

Contoh: 
  1. $1+ ( \frac{dy}{dx} )^2 = 3 \frac{d^2y}{(dx)^2}$ adalah PDB tingkat dua berderajat satu.
  2. $x (y")^3+(y')^4-y=0$ adalah PDB tingkat dua berderajat tiga.
Pengertian Persamaan Linier dan Tidak Linier

Suatu PD adalah linier jika dan hanya jika setiap suku persanaan yang memuat variabel terikat atau derivatif-derivatifnya adalah berderajat 1. 

Contoh:
  1. $y"+4xy'+2y=cos \ x $ adalah PD biasa, linier, dan berorde 2.
  2. $y"+4yy'+y'+2y=cos \ x$ adalah PD tidak linier karena memuat $yy'$.
  3.  $\frac {d^2u}{(dx)^2}+ \frac {dv}{dt}+u+v=sin \ (u)$ adalah PD parsial, linier dalam v, tetapi tidak linier dalam u karena ada fungsi $sin \ (u) $. Jadi, PD tersebut tidak linier.
  4. $\frac {d^2x}{(dt)^2}+ \frac{dy}{dt}+xy =sin \ (t) $ adalah linier dalam setiap variabel tak bebas x dan y tetapi tidak linier dalam himpunan {x, y}. Jadi, PD tersebut tidak linier.
Bacaan selanjutnya Persamaan Diferensial Biasa Linier Orde n.

Search for "Differential Equation"

Masalah Syarat Awal dan Syarat Batas

Melanjutkan tulisan sebelumnya Pengantar Persamaan Diferensial. Kita akan membahas pada kesempatan ini, Masalah Syarat Awal dan Syarat Batas.

Misalkan diberikan PD: $a_2(x)y"+a_1(x)y'+a_0(x)y=r(x)$ dengan $a_2(x)$, $a_1(x)$, $a_0(x)$ dinamakan koefisien-koefisien dapat sebagai fungsi dari x atau konstanta; dan r(x) merupakan fungsi kontinu pada $a \le x \le b $ dengan $a_2 \neq 0$. Jika PD tersebut mempunyai syarat awal:
$y (x_0)=y_0$ dan $y'(x_0)=y_1$
Maka bentuk
$a_2(x)y"+a_1(x)y'+a_0(x)y=r(x)$
$y (x_0)=y_0$ dan $y'(x_0)=y_1$
disebut sebagai Masalah Syarat Awal.

Search "Fungsi Kontinu".

Jika PD dilengkapi dengan kondisi di ujung-ujung pada interval $a \le x \le b $, misalkan y(a)=A dan y(b)=B maka disebut sebagai Masalah Syarat Batas yang disajikan dalam bentuk:
$a_2(x)y"+a_1(x)y'+a_0(x)y=r(x)$
$y (a)=A$ dan $y(b)=B$

Dalam pemodelan fenomena perubahan di dunia nyata, syarat awal ini sering dikaitkan dengan variabel waktu sedangkan syatat batas sering dikaitkan dengan variabel posisi. Jika melibatkan keduanya, model matematikanya berbentuk persamaan diferensial.

Masalah syarat awal selalu mempunyai solusi dan solusi ini pasti tunggal seperti yang dijamin oleh teorema eksistensi dan ketunggalan solusi masalah syatat awal. Adapun untuk masalah syarat batas mempunyai tiga kemungkinan solusi, yaitu solusi tunggal, solusi banyak, atau tidak ada solusi.

Misalnya $y_1(x) $ dan $y_2 (x) $ merupakan dua solusi yang bebas linier dari persamaan $a_2(x)y"+a_1(x)y'+a_0(x)y=r(x)$ seperti $y_p $ merupakan solusi khususnya maka solusi umumnya berbentuk $y_p (x)=C_1y_1 (x)+C_2 y_2 (x)+y_p (x) $.

Dengan menggunakan sistem batasnya, maka:
$y (a)=C_1y_1 (a)+C_2 y_2 (a)+y_p (a) \\  <=> C_1y_1 (a)+C_2 y_2 (a)+y_p (a)=A $
$y (b)=C_1y_1 (b)+C_2 y_2 (b)+y_p (b) \\ <=> C_1y_1 (b)+C_2 y_2 (b)+y_p (b)=B $

Dari sini,
$C_1y_1 (a)+C_2 y_2 (a)=A-y_p (a)$
$C_1y_1 (b)+C_2 y_2 (b)=B-y_p (b)$

Kedua persamaan di atas membentuk sistem persamaan linier nonhomogen dalam $C_1$ dan $C_2$ yang mempunyai tiga kemungkinan solusi yaitu solusi tunggal, solusi banyak, atau tidak punya solusi.

Baca selanjutnya Pengertian Persamaan Diferensial Biasa, Linier, dan Tak Linier

Search for "Differential Equation"

Pengantar Persamaan Diferensial

Persamaan diferensial (PD) merupakan salah satu mata kuliah yang pernah saya pelajari. Saya ingin berbagi catatan di blog ini tentang materi Persamaan Diferensial. Bagi kalian yang ingin mengikuti catatan-catatan ini silahkan untuk melihatnya pada kategori Persamaan Diferensial.

1. Pengertian Persamaan Diferensial

Persamaan diferensial adalah sebuah persamaan yang mengandung sebuah fungsi yang tak diketahui dan derivatif-derivatifnya. Jika pada persamaan tersebut, hanya terdapat satu variabel bebas yang terlibat maka disebut persamaan diferensial biasa (PDB) dan jika lebih dari satu variabel bebas yang terlibat maka disebut persamaan diferensial parsial.

2. Membentuk Persamaan Diferensial

Jika diketahui suatu fungsinya maka untuk membentuk persamaan diferensialnya, diturunkan sampai orde (tingkat) ke banyaknya konstanta yang termuat dalam fungsi dan kemudian mengeliminasi konstanta-konstanta berdasarkan banyaknya konstanta+1 persamaan.

Silahkan search "Pengertian Konstanta".

Misalnya diberikan fungsi $y=A sin \ 3x + B cos \ 3x $. Kita akan membentuk persamaan diferensial dari fungsi tersebut.

Pertama, kita turunkan y terhadap x sampai turunan kedua karena terdapat dua konstanta yang ingin kita hilangkan yang termuat dalam fungsi, yaitu A dan B.

$y=A sin \ 3x + B cos \ 3x \ .... (1)$
$\frac{dy}{dx} = 3A cos \ 3x - 3B sin \ 3x \ .... (2)$
$\frac{d^2y}{(dx)^2} = -9A sin \ 3x - 9B cos \ 3x \ .... (3)$

Kedua, kita mengeliminasi konstanta A dan B dengan menggunakan pers 1 dan 3, sehingga kita peroleh:

$\frac {d^2y}{(dx)^2} + 9y=0$

Jadi, persamaan diferensial rumpun kurva tersebut adalah  $\frac {d^2y}{(dx)^2} + 9y=0$ atau bisa juga ditulis dengan $y"+9y=0$

3. Menyelesaikan Persamaan Diferensial

Menyelesaikan persamaan diferensial adalah menemukan y=f(x) yang memenuhi suatu PD dan inilah yang disebut sebagai solusi PD.

a. Solusi Umum: Sebuah solusi yang dinyatakan secara eksplisit atau implisit yang memuat semua solusi yang mungkin atas suatu domain. Solusi umum ini memuat n konstanta sebarang.

b. Solusi Khusus: Solusi yang tidak memuat konstanta sebarang.

c. Solusi Singular: Dalam beberapa kasus terdapat solusi lain dari peraamaan yang diberikan oleh solusi tersebut ternyata tidak dapat diperoleh dengan memberikab nilai tertentu pada sembarang konstanta dari solusi umum.

Demikian pembahasan singkat ini, semoga dapat dipahami.

Baca selanjutnya Masalah Syarat Awal dan Syarat Batas.
Hotel Choices in Las Vegas Las Vegas Vacations allow visitors to explore one of Nevada's most populated cities. Tucked into the beautiful scenery of Clark County, the city is filled with gorgeous nature surroundings. This city is in the middle of the arid Mojave Desert. It is commonly called The Entertainment Capital of the World. This title refers to two important features of this location. Here is where vacationers can find a wide array of entertainment choices. Anything from boxing matches, to concerts take place in the great city. Another of the popular entertainment activities is gaming. In fact, this city is known around the world for being the home of the best casinos in the world. People from every country travel here each year, to participate in the gaming choices here. Black Jack, Roulette, and coin machines are some of the most popular casino attractions. One of the helpful things about this city makes it unique. When planning vacations it is important to note, that most hotels here have on site casinos. There are a large number of luxury hotels and resorts located here. Staying in any of these is an adventure in itself. They provide world-class accommodations. Many of these hotels and resorts have shopping, dining, and gaming opportunities, all under one roof. They understand the importance of providing their guests with a fantastic vacation. For this reason, customer service is this town is splendid. A wonderful hotel choice is the Bellagio. This location is known around the world for its elegant style and quality offerings. The Bellagio has been featured in the movies, as well as, on television. Most people recognize this hotel because of its amazing fountain display. The Fountains at Bellagio stretch the length of a quarter mile, in front of its immense lake. These fountains are best viewed at the nightly music and light show. Tourists from around the world come to witness this great sight. The Bellagio is also known for providing one of the world's most famous casino experiences. Hotels like this one goes beyond guests' expectations in supply awesome vacations. The Las Vegas Hilton is another fine hotel choice for vacationers. This chain is recognized around the world for providing guests with excellent service. The hotel has both rooms and suites to choose from. There are standard and grand hotel rooms. And there are standard and executive suites at this location. The amenities here also make your stay special. You will find fitness services, a spa, tennis courts, a pool, and an on site salon. Everything guests may need or want can be found right here. There are also diverse restaurants to choose from at the Las Vegas Hilton. Guests have a choice of fine or casual dining restaurants. They may even sample many of the choices from the hotel's Quick Eats program. For vacationers who love to shop, they will find some great shops in this location, as well. Choosing the right hotel is paramount when it comes to planning your vacation. Finding those along the Vegas Strip is a good way to be near the action. Some visitors will prefer to be in accommodations which display better views of the mountains near the city. It doesn't matter where you lodge in Las Vegas. You trip here will be outstanding. Las Vegas vacations are one of the most popular destinations in the world. When looking at vacation packages and travel deals to Las Vegas bundle and save your packages for better deals on your vacations. Buying the car, flight, hotel, and activities all at once will increase the savings on your trip. hotel in nevada las vegas treasure island hotel in las vegas nevada w hotel in las vegas nevada hotel in las vegas nevada on the strip hotel las vegas nevada strip plaza hotel in las vegas nevada excalibur hotel in las vegas nevada south point hotel in las vegas nevada southpoint hotel in las vegas nevada westgate hotel in las vegas nevada luxor hotel in las vegas nevada hotel in north las vegas nevada orleans hotel in las vegas nevada hotel rooms in las vegas nevada stratosphere hotel in las vegas nevada rio hotel in las vegas nevada four queens hotel in las vegas nevada the d hotel in las vegas nevada hotel deals in las vegas nevada aria hotel in las vegas nevada marriott hotel in las vegas nevada tropicana hotel in las vegas nevada wynn hotel in las vegas nevada mirage hotel in las vegas nevada monte carlo hotel in las vegas nevada golden nugget hotel in las vegas nevada silverton hotel in las vegas nevada elara hotel in las vegas nevada wyndham hotel in las vegas nevada hooters hotel in las vegas nevada tuscany hotel in las vegas nevada gold coast hotel in las vegas nevada mardi gras hotel in las vegas nevada mgm hotel in las vegas nevada mgm grand hotel in las vegas nevada harrah's hotel in las vegas nevada linq hotel in las vegas nevada hotels in las vegas nevada off the strip grandview hotel in las vegas nevada kid friendly hotel in las vegas nevada planet hollywood hotel in las vegas nevada trump hotel in las vegas nevada westin hotel in las vegas nevada hotel suites in las vegas nevada palazzo hotel in las vegas nevada red rock hotel in las vegas nevada palace station hotel in las vegas nevada new orleans hotel in las vegas nevada palms hotel in las vegas nevada hotel rates in las vegas nevada sls hotel in las vegas nevada d hotel in las vegas nevada best western hotel in las vegas nevada hotels in las vegas nevada near the strip m hotel in las vegas nevada best hotel deals in las vegas nevada el cortez hotel in las vegas nevada hotel reservations in las vegas nevada riviera hotel in las vegas nevada all inclusive hotel in las vegas nevada super 8 hotel in las vegas nevada rio all suites hotel in las vegas nevada la quinta hotel in las vegas nevada sahara hotel in las vegas nevada suncoast hotel in las vegas nevada hotel jobs in las vegas nevada new york hotel in las vegas nevada new hotel in las vegas nevada newest hotel in las vegas nevada lucky dragon hotel in las vegas nevada radisson hotel in las vegas nevada aladdin hotel in las vegas nevada grand hotel in las vegas nevada renaissance hotel in las vegas nevada holiday inn hotel in las vegas nevada sheraton hotel in las vegas nevada hotel galaxy in las vegas nevada aliante hotel in las vegas nevada the hotel in las vegas nevada hotel las vegas nevada luxor encore hotel in las vegas nevada days inn hotel in las vegas nevada downtown grand hotel in las vegas nevada texas hotel in las vegas nevada mandalay hotel in las vegas nevada longhorn hotel in las vegas nevada most expensive hotel in las vegas nevada hotel furniture liquidators in las vegas nevada marriott hotel in las vegas nevada on the strip howard johnson hotel in las vegas nevada delano hotel in las vegas nevada directions to excalibur hotel in las vegas nevada pyramid hotel in las vegas nevada hotel taxes in las vegas nevada stardust hotel in las vegas nevada what's the biggest hotel in las vegas nevada hilton grand hotel in las vegas nevada largest hotel in las vegas nevada loews hotel in las vegas nevada
Copyright © Matematika Ku Bisa. All rights reserved. Template by CB. Theme Framework: Responsive Design
Messenger
×
_

Hai, Kamu bisa kirim pesan atau PR Matematikamu ke Admin, di sini! Jangan lupa like halaman admin ya, terima kasih!