Belajar Matematika Online

Google Penelusuran Khusus
Tampilkan postingan dengan label Persamaan Diferensial. Tampilkan semua postingan
Tampilkan postingan dengan label Persamaan Diferensial. Tampilkan semua postingan

Persamaan Diferensial Riccati

PD Riccati merupakan salah satu PD khusus yang dapat diubah ke PD Linier Tingkat 1 sama seperti PD Bernoulli, juga dapat diubah ke PD Linier Tingkat 1. Secara khusus kita telah membahasnya pada Persamaan Diferensial Orde Satu Bernoulli. Adapun bentuk umum PD Riccati adalah sebagai berikut.
$\frac{dy}{dx}=P(x)y^2+Q(x)y+R(x)$
Jika $R(x)=0$, maka PD menjadi PD Bernoulli. Jika $R(x) \neq 0$ maka PD tersebut diubah ke PD Linier Tingkat 1 dengan cara berikut ini.
  1. Ambil satu penyelesaian khusus $y=u(x) $ (biasanya dalam soal sudah diketahui). Karena itu, dipunyai $\frac{dy}{dx}=P(x)u^2+Q(x)u+R(x)$.
  2. Substitusikan $y=u+ \frac{1}{z}$ dengan derivatifnya $\frac{dy}{dx} = \frac{du}{dx} - \frac{1}{z^2} \frac{dz}{dx}$ ke persamaan diferensial Riccati, maka diperoleh:
$\frac{dz}{dx}+[2uP(x)+Q(x)]z=-P(x)$
Contoh: Selesaikan persamaan $\frac{dy}{dx}=-2-y+y^2$ dengan $y=2$ adalah penyelesaian khususnya!

Penyelesaian: Sudah jelas bahwa persamaan tersebut termasuk dalam PD Riccati, kita nyatakan dalam bentuk yang ekuivalen sebagai berikut.

$ \begin{align} & \frac{dy}{dx} =-2-y+y^2 \\ \Leftrightarrow & \frac{dy}{dx} =y^2-y-2  \end{align} $

Dari bentuk terakhir di atas maka diketahui $P(x)=1$, $Q(x)= -1$ dan $R(x)=-2$. Dari soal diketahui bahwa $u(x)=2$. Dengan menggunakan transformasi $y=u+ \frac{1}{z} \Leftrightarrow y=2+ \frac{1}{z}$ maka persamaan direduksi menjadi:

$ \begin{align} \frac{dz}{dx}+[2uP(x)+Q(x)]z &= -P(x) \\ \Leftrightarrow  \frac{dz}{dx}+[2(2)(1)-1]z &= -1 \\ \Leftrightarrow \frac{dz}{dx}+3z &= -1 \end{align}$

Bentuk terakhir ini adalah PD linier tingkat 1 yang telah dibahas pada tulisan Persamaan Diferensial Linier Tingkat 1 dengan Faktor integrasi:

$ \begin{align} e^{ \int 3  \ dx} &= e^{3x}  \end{align} $.

Sehingga penyelesaian dari $ \frac{dz}{dx}+3z = -1$ adalah:

$ \begin{align} z &= \frac{1}{e^{3x}}( \int (-1)e^{3x} \ dx) \\ &= e^{-3x}(- \int e^{3x} \ dx) \\ &=e^{-3x}(- \frac{1}{3}e^{3x}+k) \\ \Leftrightarrow \frac{1}{y-2} &= ke^{-3x}-\frac{1}{3} \\ \Leftrightarrow y-2 &= \frac{1}{ke^{-3x}-\frac{1}{3}} \\ \Leftrightarrow y &= 2+\frac{1}{ke^{-3x}- \frac{1}{3}} \end{align} $

Jadi, $y=2+ \frac{1}{ke^{-3x}- \frac{1}{3}}$ adalah penyelesaian dari $\frac{dy}{dx}=-2-y+y^2$.
    

Persamaan Diferensial Orde Satu Bernoulli

PD Bernoulli memiliki bentuk umum 
$\frac{dy}{dx}+p(x)y=r(x)y^n \ \ ; \ n \neq 0$
Untuk $n \neq 1$, kita dapat mentransformasi bentuk tersebut menjadi PD Linier Tingkat 1 dengan menggunakan transformasi $z=y^{-n+1} $. Dari sini diketahui:
$\frac{dz}{dx}=(-n+1)y^{-n} \frac{dy}{dx} \Leftrightarrow \frac{dy}{dx} = \frac{y^n}{1-n} \frac{dz}{dx} $

Jika $\frac{dy}{dx}+p(x)y=r(x)y^n$ dikalikan dengan $(1-n)y^{-n} $ maka diperoleh:
$\frac{dz}{dx}+(1-n)p(x)z=(1-n)r(x) $
Contoh: Selesaikan persamaan $2xy \frac{dy}{dx}-y^2=x^2$

Penyelesaian: Untuk memperjelas bahwa persamaan tersebut termasuk dalam PD Bernoulli, kita nyatakan dalam bentuk yang ekuivalen sebagai berikut.

$ \begin{align} & 2xy \frac{dy}{dx}-y^2=x^2 \\ \Leftrightarrow & \frac{dy}{dx} - \frac{y^2}{2xy} = \frac{x^2}{2xy} \\ \Leftrightarrow & \frac{dy}{dx} - \frac{1}{2x} y = \frac{x}{2} y^{-1} \end{align} $

Dari bentuk terakhir di atas, diketahui $p(x)=- \frac{1}{2x} $, $ r (x)= \frac{x}{2}$ dan $n=-1$. (Dengan menggunakan transformasi $z=y^{-n+1}=y^{-(-1)+1}=y^2$ dan mengalikan $(1-n)y^{-n+1}=2y^2$ di kedua ruas PD Bernoulli di atas) Maka diperoleh:

$ \begin{align} \frac{dz}{dx}+(1-n)p(x)z &=(1-n)r(x) \\ \Leftrightarrow \frac{dz}{dx}+(1-(-1))(- \frac{1}{2x})z &=(1-(-1)) \frac{x}{2} \\ \Leftrightarrow \frac{dz}{dx}+2(- \frac{1}{2x})z &=2 ( \frac{x}{2}) \\ \Leftrightarrow \frac{dz}{dx} - \frac{1}{x}z &= x \end{align}$

Bentuk terakhir ini adalah PD linier tingkat 1 yang telah dibahas pada tulisan Persamaan Diferensial Linier Tingkat 1 dengan Faktor integrasi:

$ \begin{align} e^{ \int - \frac{1}{x}  \ dx} &= e^{-ln(x)} \\ &= e^{ln (x^{-1})} \\ &= x^{-1} \\ &= \frac{1}{x} \end{align} $.

Sehingga penyelesaian dari $ \frac{dz}{dx} - \frac{1}{x} z=x$ adalah:

$ \begin{align} z &= \frac{1}{ \frac{1}{x}}( \int x( \frac{1}{x}) \ dx)  \\ &= x ( \int 1 \ dx) \\ &= x (x+k) \\ &= x^2+kx \end{align} $

Jadi, 
$y^2=x^2+kx \Leftrightarrow y= \sqrt{x^2+kx} $

Persamaan Diferensial Linier Tingkat 1

Pengertian PD Linier Tingkat 1


Suatu persamaan diferensial tingkat 1 dikatakan linier dalam y jika tidak dapat memuat hasil kali, pangkat atau kombinasi non linier lainnya dari y atau y'. Bentuk umum dari PD linier tingkat (order) 1 diberikan sebagai berikut.
$y'+p(x)y=f(x) $
Cara Menyelesaikan PD Linier Tingkat 1

Jika $p(x)=0$ maka dapat diselesaikan dengan integrasi langsung, sedangkan jika $f(x)=0$ maka persamaan adalah  PD terpisahkan, yakni:

$\begin{align} y'+p(x)y &=0 \\ y' &= -p(x)y \\ \frac{dy}{dx} &= -p(x) \ dx \\ \frac{1}{y} \ dy &= -p(x) \ dx \\ \int \frac{1}{y} \ dy &= \int -p(x) \ dx \\  ln (y) &= - \int p(x) \ dx \\ y &= e^{- \int p(x) \  dx } \end{align}$

Jika $p(x) \neq 0$ dan $f(x) \neq 0$, untuk menentukan solusi PD linier tingkat 1 tersebut adalah sebagai berikut.

Misal $u(x)$ adalah suatu fungsi dalam x.

$\begin{align} y'+p(x)y=f(x) \\ \iff u(y'+py) &= uf \\ \iff uy'+upy' &= uf \\ \iff uy'+u'y-u'y+upy &= uf \\ \iff (uy)' - (u'y-upy) &= uf \\ \iff \frac{d(uy)}{dx} - y'(u'-up) &= uf \end{align} $

Agar bentuk di atas dapat menggunakan integrasi di kedua ruas, kita harus mencari $u(x)$ dengan memberikan ketentuan bahwa $u'-up=0$, sehingga:

$\begin{align} \frac{d(uy)}{dx} &= uf \\ d(uy) &= uf \ dx \\ \int d(uy) &= \int uf \ dx \\ uy &= \int uf \ dx \\ y &= \frac{1}{u} \int uf \ dx \end{align}$ 

Ini bisa terjadi jika $u(x)=e^{ \int p(x) \ dx} $ sehingga $u'(x)-u(x)p(x)=0$.

Selanjutnya $u(x)$ disebut faktor integrasi PD Linier Tingkat 1.

Contoh Soal Penyelesaian PD Linier Tingkat 1 dengan Faktor Integrasi

Selesaikan $dy/dx + y tan (x) = sec (x) $ !

Penyelesaian:
Diketahui $p(x)=tan (x)$ maka faktor integrasinya adalah:
$\begin{align} u(x) &= e^{ \int tan (x) \ dx} \\ &= e^{-ln (cos (x))} \\ &= sec (x) \end {align}$.

Jadi,
$\begin{align} y &= \frac{1}{u(x)} \int u(x)f(x) \ dx \\ &= \frac{1}{sec(x)} \int sec (x) \ sec (x) \ dx \\ &= \frac{1}{sec (x)} \int sec^2 (x) \ dx \\ &= \frac{1}{sec (x)} (tan (x)+k) \\ y &= sin (x)+k \ cos(x) \end{align}$.

k suatu bilangan konstan.

Persamaan Diferensial Tingkat 2

Pada bacaan sebelumnya di Persamaan Diferensial Tingkat 1, sudah dijelaskan bahwa tulisan-tulisan untuk kategori Persamaan Diferensial hanya membahas PD yang dapat diselesaikan secara eksak. Yang dimaksud PD Tingkat 2 juga sudah dibahas di situ, yaitu PD yang memuat derivatif dalam persamaan paling tinggi adalah 2. Silahkan baca Pengertian Persamaan Diferensial Biasa, Linier, dan Tak Linier.

Pada PD Tingkat 2, insya Allah dibahas materi-materi berikut ini.
  • PD Khusus Tak Linier
  • PD Linier Orde 2 Homogen dengan Koefisien Konstan
  • PD Linier Orde Dua Tak Homogen dengan Koefisien Konstan
Pada PD khusus tak linier kita menggunakan metode reduksi tingkat. Jadi, ada PD khusus tingkat 2 tak linier yang dapat direduksi menjadi PD tingkat 1 dengan melakukan pemisalan, sehingga dengan bentuk PD tingkat 1 nya tersebut, kita dapat menyelesaikannya dengan suatu cara yang ada pada PD tingkat 1. Kemudian menjadi sederhanalah penyelesaian PD tingkat 2 nya, dengan mengembalikan kembali variabel yang telah dimisalkan tadi.

Pada PD linier orde 2 homogen dengan koefisien konstan, kita menggunakan kriteria akar-akar persamaan karakteristik yang terdiri dari 3 kemungkinan, yaitu dua akar real berbeda, dua akar real kembar, dan dua akarnya kompleks.

Pada PD linier orde 2 tak homogen dengan koefisien konstan, solusi umnya berbentuk $y=y_c +y_p $ dengan $y_c $ solusi PD homogen dan $y_p $ adalah solusi khusus dari persamaan tak homogen. Adapun solusi khusus dapat dicari dengan 3 metode berikit ini.
  1. Metode Koefisien Tak-Tentu
  2. Metode Variasi Parameter
  3. Metode Operator
Untuk memudahkan para pembaca, pembahasan penyelesaian PD Tingkat 2 ini, saya beri label PD Tingkat 2.

Search for "Differential Equations":

Persamaan Diferensial Tingkat 1

Kita telah membahas pengertian persamaan diferensial, bagaimana membentuk persamaan diferensial, dan apa yang dimaksud dengan solusi persamaan diferensial pada tulisan Pengantar Persamaan Diferensial.

Ada persamaan diferensial biasa yang hanya menggunakan satu variabel bebas dan persamaan diferensial parsial yang sudah menggunakan lebih dari satu variabel bebas. Dari persamaan-persamaan diferensial tersebut ada yang bersifat linier dan tidak linier. Silahkan baca Pengertian Persamaan Diferensial Biasa, Linier, dan Tak Linier.

Jika dilihat dari persamaannya, suatu variabel tak bebasnya terturunkan 1 kali maka itu PD tingkat 1, jika terturunkan 2 kali maka disebut PD tingkat 2, dst.

Ketika membahas masalah persamaan dalam matematika, maka yang jadi inti pembahasannya adalah menemukan solusi dari persamaan tersebut. Ada persamaan yang bisa diselesaikan secara eksak dan tidak bisa diselesaikan secara eksak sehingga penyeleaaian persamaan tersebut menggunakan metode numerik. Maka dalam pembahasan materi Persamaan Diferensial pada blog ini, hanyalah materi-materi yang bisa diselesaikan secara eksak. Adapun jika ada yang menggunakan metode numerik, itu sebagai tambahan saja. Semoga dapat bermanfaat bagi kita semua.

Persamaan diferensial tingkat (orde) 1 yanga dibahas di sini adalah:
  • PD Linier Tingkat (Orde) 1
  • PD Tingkat Satu Khusus Diubah ke PD Linier Tingkat 1 yang meliputi PD Bernouli, PD Riccati
  • PD Tingkat 1 (Linier atau Tak-Linier) dengan Variabel Terpisah
  • PD Reduksi Terpisahkan (PD Homogen)
  • PD dengan M(x,y) dan N(x,y) Linier tetapi Tidak Homogen
  • PD Eksak
  • PD Tak Eksak
Itilah materi-materi yang insya Allah dibahas dalam blog ini, saya akan memberi label PD Tingkat 1 sehingga para pembaca bisa mememukan secara cepat materi-materi yang telah ditulis. Demikian tulisan kami ini, semoga bermanfaat.

Bacaan selanjutnya Persamaan Diferensial Tingkat 2.

Search for "Differential Equations"

Persamaan Diferensial Biasa Linier Orde n

Berdasarkan bacaan sebelumnya Pengertian Persamaan Diferensial Biasa, Linier, dan Tak Linier. Maka, kita dapat menuliskan bentuk umum PD Linier orde n sebagai berikut.

$a_n (x)y^{(n)}+a_{n-1}(x)y^{(n-1)}+... \\ +a_2 (x)y"+a_1 (x)y'+a_0 (x)y=f (x) $

Bila tidak dapat dinyatakan dalam bentuk di atas dikatakan PD tidak linier. Bila f(x)=0 maka disebut PD Linier Homogen sedangkan bila $f(x) \neq 0$ maka disebut PD Linier Tak-Homogen.

Untuk kasus n=1 disebut PD Linier Orde 1 dan untuk n=2 disebut PD Linier Orde 2.

$a_n(x) $ menyatakan fungsi ke-n dalam variabel x, yang dalam hal ini berkedudukan sebagai koefisien. Apabila $a_n(x) $ fungsi konstan maka disebut PD Linier dengan Koefisien Konstan.

Misal diberikan fungsi $y=sin \ x - cos \ x+1$. Bila dilakukan penurunan sebanyak dua kali, yakni $y'=cos  \ x+ sin \ x $ dan $y"=-sin \ x+ cos \ x $ diperoleh hubungan $y"+y=1$ (PD Linier tak Homogen orde 2 dengan koefisien konstan).

Cara memperoleh hubungan tersebut, telah dibahas pada tulisan Pengantar Persamaan Diferensial mengenai bagaimana menyusun persamaan diferensial biasa.

Fungsi $y=sin  \ x - cos \ x +1$ disebut solusi PD $y"+y=1$. Pertanyaan yang muncul kemudian adalah jika diberikan suatu PD linier orde n, bagaimana cara mendapatkan solusinya?  Penyelesaian PD Linier orde n, kita bahas terpisah pada tulisan lain dengan memberikan judul tersendiri dalam dua bahasan, yaitu bagaimana menyelesaikan PD Linier Orde 1 dan PD Linier Orde 2. Silahkan baca selanjutnya berikut ini.
  1. Persamaan Diferensial Tingkat 1 ✔
  2. Persamaan Diferensial Tingkat 2
Search for "Differential Equations"

Pengertian Persamaan Diferensial Biasa, Linier, dan Tak Linier

Bacaan sebelumnya Masalah Syarat Awal dan Syarat Batas. Pada tulisan tersebut dijelaskan bahwa dalam pemodelan fenomena perubahan dunia nyata, syarat awal sering dikaitkan dengan variabel waktu sedangkan syarat batas sering dikaitkan dengan variabel posisi. Jika melibatkan keduanya, membentuk persamaan diferensial.

Pada tulisan kali ini, kita akan membahas pengertian persamaan diferensial biasa, persamaan diferensial linier dan tak linier beserta dengan contohnya.

Pengertian Persamaan Diferensial Biasa


Persamaan diferensial biasa (PDB) adalah suatu persamaan diferensial yang melibatkan hanya satu variabel bebas. Jika diambil y(x) suatu fungsi dengan y disebut variabel tak bebas dan x variabel bebas, maka suatu persamaan diferensial biasa dapat dinyatakan dalam bentuk:

$F(x, \ y, \ y", \ ... \ y^{(n)})=0$

Order dari suatu PDB didefinisikan sebagai tingkat dari derivatif tertinggi yang muncul dalam persamaan diferensial. Derajat dari suatu PD adalah pangkat tertinggi dari suku derivatif tertinggi yang muncul dalam PD.

Contoh: 
  1. $1+ ( \frac{dy}{dx} )^2 = 3 \frac{d^2y}{(dx)^2}$ adalah PDB tingkat dua berderajat satu.
  2. $x (y")^3+(y')^4-y=0$ adalah PDB tingkat dua berderajat tiga.
Pengertian Persamaan Linier dan Tidak Linier

Suatu PD adalah linier jika dan hanya jika setiap suku persanaan yang memuat variabel terikat atau derivatif-derivatifnya adalah berderajat 1. 

Contoh:
  1. $y"+4xy'+2y=cos \ x $ adalah PD biasa, linier, dan berorde 2.
  2. $y"+4yy'+y'+2y=cos \ x$ adalah PD tidak linier karena memuat $yy'$.
  3.  $\frac {d^2u}{(dx)^2}+ \frac {dv}{dt}+u+v=sin \ (u)$ adalah PD parsial, linier dalam v, tetapi tidak linier dalam u karena ada fungsi $sin \ (u) $. Jadi, PD tersebut tidak linier.
  4. $\frac {d^2x}{(dt)^2}+ \frac{dy}{dt}+xy =sin \ (t) $ adalah linier dalam setiap variabel tak bebas x dan y tetapi tidak linier dalam himpunan {x, y}. Jadi, PD tersebut tidak linier.
Bacaan selanjutnya Persamaan Diferensial Biasa Linier Orde n.

Search for "Differential Equation"

Masalah Syarat Awal dan Syarat Batas

Melanjutkan tulisan sebelumnya Pengantar Persamaan Diferensial. Kita akan membahas pada kesempatan ini, Masalah Syarat Awal dan Syarat Batas.

Misalkan diberikan PD: $a_2(x)y"+a_1(x)y'+a_0(x)y=r(x)$ dengan $a_2(x)$, $a_1(x)$, $a_0(x)$ dinamakan koefisien-koefisien dapat sebagai fungsi dari x atau konstanta; dan r(x) merupakan fungsi kontinu pada $a \le x \le b $ dengan $a_2 \neq 0$. Jika PD tersebut mempunyai syarat awal:
$y (x_0)=y_0$ dan $y'(x_0)=y_1$
Maka bentuk
$a_2(x)y"+a_1(x)y'+a_0(x)y=r(x)$
$y (x_0)=y_0$ dan $y'(x_0)=y_1$
disebut sebagai Masalah Syarat Awal.

Search "Fungsi Kontinu".

Jika PD dilengkapi dengan kondisi di ujung-ujung pada interval $a \le x \le b $, misalkan y(a)=A dan y(b)=B maka disebut sebagai Masalah Syarat Batas yang disajikan dalam bentuk:
$a_2(x)y"+a_1(x)y'+a_0(x)y=r(x)$
$y (a)=A$ dan $y(b)=B$

Dalam pemodelan fenomena perubahan di dunia nyata, syarat awal ini sering dikaitkan dengan variabel waktu sedangkan syatat batas sering dikaitkan dengan variabel posisi. Jika melibatkan keduanya, model matematikanya berbentuk persamaan diferensial.

Masalah syarat awal selalu mempunyai solusi dan solusi ini pasti tunggal seperti yang dijamin oleh teorema eksistensi dan ketunggalan solusi masalah syatat awal. Adapun untuk masalah syarat batas mempunyai tiga kemungkinan solusi, yaitu solusi tunggal, solusi banyak, atau tidak ada solusi.

Misalnya $y_1(x) $ dan $y_2 (x) $ merupakan dua solusi yang bebas linier dari persamaan $a_2(x)y"+a_1(x)y'+a_0(x)y=r(x)$ seperti $y_p $ merupakan solusi khususnya maka solusi umumnya berbentuk $y_p (x)=C_1y_1 (x)+C_2 y_2 (x)+y_p (x) $.

Dengan menggunakan sistem batasnya, maka:
$y (a)=C_1y_1 (a)+C_2 y_2 (a)+y_p (a) \\  <=> C_1y_1 (a)+C_2 y_2 (a)+y_p (a)=A $
$y (b)=C_1y_1 (b)+C_2 y_2 (b)+y_p (b) \\ <=> C_1y_1 (b)+C_2 y_2 (b)+y_p (b)=B $

Dari sini,
$C_1y_1 (a)+C_2 y_2 (a)=A-y_p (a)$
$C_1y_1 (b)+C_2 y_2 (b)=B-y_p (b)$

Kedua persamaan di atas membentuk sistem persamaan linier nonhomogen dalam $C_1$ dan $C_2$ yang mempunyai tiga kemungkinan solusi yaitu solusi tunggal, solusi banyak, atau tidak punya solusi.

Baca selanjutnya Pengertian Persamaan Diferensial Biasa, Linier, dan Tak Linier

Search for "Differential Equation"

Pengantar Persamaan Diferensial

Persamaan diferensial (PD) merupakan salah satu mata kuliah yang pernah saya pelajari. Saya ingin berbagi catatan di blog ini tentang materi Persamaan Diferensial. Bagi kalian yang ingin mengikuti catatan-catatan ini silahkan untuk melihatnya pada kategori Persamaan Diferensial.

1. Pengertian Persamaan Diferensial

Persamaan diferensial adalah sebuah persamaan yang mengandung sebuah fungsi yang tak diketahui dan derivatif-derivatifnya. Jika pada persamaan tersebut, hanya terdapat satu variabel bebas yang terlibat maka disebut persamaan diferensial biasa (PDB) dan jika lebih dari satu variabel bebas yang terlibat maka disebut persamaan diferensial parsial.

2. Membentuk Persamaan Diferensial

Jika diketahui suatu fungsinya maka untuk membentuk persamaan diferensialnya, diturunkan sampai orde (tingkat) ke banyaknya konstanta yang termuat dalam fungsi dan kemudian mengeliminasi konstanta-konstanta berdasarkan banyaknya konstanta+1 persamaan.

Silahkan search "Pengertian Konstanta".

Misalnya diberikan fungsi $y=A sin \ 3x + B cos \ 3x $. Kita akan membentuk persamaan diferensial dari fungsi tersebut.

Pertama, kita turunkan y terhadap x sampai turunan kedua karena terdapat dua konstanta yang ingin kita hilangkan yang termuat dalam fungsi, yaitu A dan B.

$y=A sin \ 3x + B cos \ 3x \ .... (1)$
$\frac{dy}{dx} = 3A cos \ 3x - 3B sin \ 3x \ .... (2)$
$\frac{d^2y}{(dx)^2} = -9A sin \ 3x - 9B cos \ 3x \ .... (3)$

Kedua, kita mengeliminasi konstanta A dan B dengan menggunakan pers 1 dan 3, sehingga kita peroleh:

$\frac {d^2y}{(dx)^2} + 9y=0$

Jadi, persamaan diferensial rumpun kurva tersebut adalah  $\frac {d^2y}{(dx)^2} + 9y=0$ atau bisa juga ditulis dengan $y"+9y=0$

3. Menyelesaikan Persamaan Diferensial

Menyelesaikan persamaan diferensial adalah menemukan y=f(x) yang memenuhi suatu PD dan inilah yang disebut sebagai solusi PD.

a. Solusi Umum: Sebuah solusi yang dinyatakan secara eksplisit atau implisit yang memuat semua solusi yang mungkin atas suatu domain. Solusi umum ini memuat n konstanta sebarang.

b. Solusi Khusus: Solusi yang tidak memuat konstanta sebarang.

c. Solusi Singular: Dalam beberapa kasus terdapat solusi lain dari peraamaan yang diberikan oleh solusi tersebut ternyata tidak dapat diperoleh dengan memberikab nilai tertentu pada sembarang konstanta dari solusi umum.

Demikian pembahasan singkat ini, semoga dapat dipahami.

Baca selanjutnya Masalah Syarat Awal dan Syarat Batas.

Search for "Differential Equation"
Copyright © Matematika Ku Bisa. All rights reserved. Template by CB. Theme Framework: Responsive Design
Kirim Pesan atau Soal
×
_

Hai, Kamu bisa kirim pesan atau PR Matematikamu ke Admin, di sini! Jangan lupa like halaman admin ya, terima kasih!