Belajar Matematika Online

IXL Math On IXL, math is more than just numbers. With unlimited questions, engaging item types, and real-world scenarios, IXL helps learners experience math at its most mesmerizing! Pre-K skills Represent numbers - up to 5 Inside and outside Classify shapes by color Long and short Wide and narrow See all 77 pre-K skills Kindergarten skills Fewer, more, and same Read clocks and write times Seasons Count money - pennies through dimes Shapes of everyday objects I See all 182 kindergarten skills First-grade skills Counting tens and ones - up to 99 Hundred chart Subtraction facts - numbers up to 10 Read a thermometer Measure using an inch ruler See all 210 first-grade skills Second-grade skills Counting patterns - up to 1,000 Greatest and least - word problems - up to 1,000 Compare clocks Create pictographs II Which customary unit of volume is appropriate? See all 287 second-grade skills Third-grade skills Convert between standard and expanded form Count equal groups Estimate sums Show fractions: area models Find equivalent fractions using area models See all 384 third-grade skills Fourth-grade skills Addition: fill in the missing digits Divide larger numbers by 1-digit numbers: complete the table Objects on a coordinate plane Circle graphs Place values in decimal numbers See all 340 fourth-grade skills Fifth-grade skills Least common multiple Multiply fractions by whole numbers: word problems Sale prices Find start and end times: word problems Parts of a circle See all 347 fifth-grade skills Sixth-grade skills Compare temperatures above and below zero Which is the better coupon? Evaluate variable expressions with whole numbers Classify quadrilaterals Create double bar graphs See all 321 sixth-grade skills Seventh-grade skills Solve percent equations Arithmetic sequences Evaluate multi-variable expressions Identify linear and nonlinear functions Pythagorean theorem: word problems See all 289 seventh-grade skills Eighth-grade skills Write variable expressions for arithmetic sequences Add and subtract polynomials using algebra tiles Add polynomials to find perimeter Multiply and divide monomials Scatter plots See all 317 eighth-grade skills Algebra 1 skills Write and solve inverse variation equations Write an equation for a parallel or perpendicular line Solve a system of equations by graphing Solve a system of equations using substitution Rational functions: asymptotes and excluded values See all 309 Algebra 1 skills Geometry skills Triangle Angle-Sum Theorem Proving a quadrilateral is a parallelogram Properties of kites Similarity of circles Perimeter of polygons with an inscribed circle See all 221 Geometry skills Algebra 2 skills Multiply complex numbers Product property of logarithms Find the vertex of a parabola Write equations of ellipses in standard form from graphs Reference angles See all 322 Algebra 2 skills Precalculus skills Identify inverse functions Graph sine functions Convert complex numbers between rectangular and polar form Find probabilities using two-way frequency tables Use normal distributions to approximate binomial distributions See all 261 Precalculus skills Calculus skills Find limits using the division law Determine end behavior of polynomial and rational functions Determine continuity on an interval using graphs Find derivatives of polynomials Find derivatives using the chain rule I See all 97 Calculus skills Mathematics is a persistent source of difficulty and frustration for students of all ages. Elementary students spend years trying to master arithmetic. Teens struggle with the shift to algebra and its use of variables. High-school students must face diverse challenges like geometry, more advanced algebra, and calculus. Even parents experience frustration as they struggle to recall and apply concepts they had mastered as young adults, rendering them incapable of providing math help for their children. Whether you need top Math tutors in Boston, Math tutors in Detroit, or top Math tutors in Dallas Fort Worth, working with a pro may take your studies to the next level. The truth is, everyone struggles with math at one time or another. Students, especially at the high-school level, have to balance challenging coursework with the demands of other courses and extracurricular activities. Illness and school absences can leave gaps in a student’s instruction that lead to confusion as more advanced material is presented. Certain concepts that are notoriously difficult to master, such as fractions and the basics of algebra, persist throughout high school courses, and if not mastered upon introduction, can hinder a student’s ability to learn new concepts in later courses. Even students confident in their math skills eventually find a course or concept incomprehensible as they reach advanced math classes. In other words, no matter what your age or ability, everyone eventually needs help with math. Varsity Tutors offers resources like free Math Diagnostic Tests to help with your self-paced study, or you may want to consider a Math tutor. Varsity Tutors is happy to offer free practice tests for all levels of math education. Students can take any one of hundreds of our tests that range from basic arithmetic to calculus. These tests are conveniently organized by course name (e.g. Algebra 1, Geometry, etc.) and concept (e.g. “How to graph a function”). Students can select specific concepts with which they are struggling or concepts that they are trying to master. Students can even use these concept-based practice tests to identify areas in which they may not have realized they were struggling. For instance, if a student is struggling with his or her Algebra 1 course, he or she can take practice tests based on broad algebra concepts such as equations and graphing and continue to practice in more specific subcategories of these concepts. In this way, students can more clearly differentiate between those areas that they fully understand and those that could use additional practice. Better yet, each question comes with a full written explanation. This allows students to not only see what they did wrong, but provides the student with step-by-step instructions on how to solve each problem. In addition to the Math Practice Tests and Math tutoring, you may also want to consider taking some of our Math Flashcards. Varsity Tutors’ Learning Tools also offer dozens of Full-Length Math Practice Tests. The longer format of the complete practice tests can help students track and work on their problem-solving pace and endurance. Just as on the results pages for the concept-specific practice tests, the results for these longer tests also include a variety of scoring metrics, detailed explanations of the correct answers, and links to more practice available through other Learning Tools. These free online Practice Tests can assist any student in creating a personalized mathematics review plan, too, as the results show which of the concepts they already understand and which concepts may need additional review. After reviewing the skills that need work, students can take another Full-Length Math Practice Test to check their progress and further refine their study plan. Once a student creates a Learning Tools account, they can also track their progress on all of their tests. Students can view their improvement as they begin getting more difficult questions correct or move on to more advanced concepts. They can also share their results with tutors and parents, or even their math teacher. Create a Varsity Tutors Learning Tools account today, and get started on a path to better understanding math!
Mau EBOOK "MATEMATIKA KU BISA"? KLIK DI SINI!
Hasil Pencarian di Blog Matematika Ku Bisa
Showing posts with label Teori Grup. Show all posts
Showing posts with label Teori Grup. Show all posts

Definisi dan Teorema Order dari Suatu Anggota Grup

Definisi: Misalkan (G,*) grup dan $a \in G$. Order dari a, ditulis $o(a)$, adalah bilangan bulat positif terkecil n sedemikian sehingga $a^n=e$. Jika tidak ada bilangan n yang demikian maka dikatakan order a adalah nol atau tak hingga. 

Teorema: Misalkan (G,*) grup dan $a \in G$ dengan $o(a)=n$.
1) Jika $a^m=e untuk suatu bilangan bulat positif m, maka n membagi m
2) Untuk setiap bilangan bulat positif t, berlaku $o(a^t)=n/FPB(t,n)$
Bukti 1): Karena n bilangan asli terkecil demikian sehingga $a^n=e$, maka n harus lebih kecil atau sama dengan m. Andaikan n tidak membagi m, maka menurut algoritma pembagian m=np+q dimana 0 < q < n.
Pandang!
$a^m=e$
$a^(np+q)=e$
$a^(np) a^q=e$
Jadi diperoleh $a^q$ juga sama dengan e dimana  0 < q < n. Hal ini bertentangan dengan kenyataan bahwa n adalah yang terkecil sedemikian hingga $a^n=e$. Jadi, pengandaian salah yang benar adalah n membagi m.

Bukti 2): Misalkan KPK dari t dan n adalah m. Hal ini berarti bahwa t membagi m dan n membagi m. Akibatnya, $a^m=e$. Jadi, orde dari $a^t$ adalah p dimana t.p=m. Andaikan diketahui bahwa FPB dari t dan m adalah q. Maka, menurut suatu teorema dalam teori bilangan m=(t.n)/q. Dengan demikian orde dari $a^t$ adalah:
p=m/t
p={(t.n)/q}/t
p=n/q.
Karena q adalah FPB dari t dan n maka terbukti.

Ketunggalan Unsur Identitas dan Invers

Suatu hal yang sangat penting untuk diketahui bahwa unsur identitas dalam Grup adalah tunggal. Hal ini mengakibatkan bahwa unsur invers dalam Grup juga tunggal.

Apa yang terjadi ketika unsur identitas itu tidak tunggal? Maka, suatu unsur akan memiliki lebih dari satu invers tergantung banyaknya unsur identitas. Kalau suatu unsur memiliki lebih dari satu invers maka setiap unsur itu di dalam G harus dituliskan sebanyak unsur inversnya dalam himpunan G tersebut. Hal ini bertentangan dengan konsep menuliskan keanggotaan himpunan sebab {a, a, b, b}={a, b}. Akibatnya, sulit membayangkan ketidakkonsistenan hal ini akan terjadi dalam matematika. Padahal, matematika dibangun atas dasar konsistensinya. Namun, hal ini tidak akan pernah terjadi karena kalau suatu himpunan G dengan operasi * adalah Grup maka Ketunggalan Unsur Identitas dan Invers menyertainya sebagai sifat yang dimilikinya yang akan ditunjukkan di bawah ini dengan bukti kontradiksi yang lebih formal dari penjelasan barusan.

Di dalam kehidupan, pernahkah kita memikirkan bahwa setiap dari kita adalah tunggal? Hukum ketunggalan unsur identitas ini juga berlaku bagi diri kita sebagai individu manusia dalam himpunan manusia. Tidak ada satupun manusia yang sama persis walaupun mereka dilahirkan kembar atau dengan kata lain tidak ada satupun manusia yang memiliki identitas yang sama tetapi memiliki dua badan yang berbeda. Misalnya, identitas Ibnu Batauga dimiliki juga oleh Ahmad Batauga. Hal yang tidak bisa diterima oleh akal sehat karena jika identitas Ibnu Batauga dimiliki juga oleh Ahmad Batauga maka orang tua mereka juga sama yaitu sama-sama dilahirkan olehnya. Jika orang tua mereka itu sama maka sebenarnya Ibnu Batauga dan Ahmad Batauga adalah orang yang sama hanya nama panggilannya berbeda. Artinya tidak ada satu identitas tetapi dalam dua tubuh yang berbeda walaupun mereka terlahir kembar dari orang tua yang sama. Hal ini dibuktikan dengan penemuan ilmiah bahwa setiap orang memiliki pola garis pada jarinya itu unik. Jadi, setiap manusia memiliki identitasnya sendiri yang membedakan dengan orang lain.

Berikut ini diberikan bukti Ketunggalan Unsur Identitas dan Invers secara formal.

¤) Unsur identitas itu tunggal

Bukti:
Andaikan tidak tunggal, maka suatu Grup memiliki unsur identitas lain (misalnya f) selain dari e. Akibatnya, e=e*f. Karena e=e*e maka diperoleh persamaan e*f=e*e. Dengan menggunakan hukum pencoretan kiri diperoleh f=e yang kontradiksi dengan pengandaian kita bahwa f tidak sama dengan e. (terbukti).

¤¤) Unsur invers itu juga tunggal sebagai akibat unsur identitas itu tunggal.

Bukti:
Andaikan untuk setiap a $\in G$ memiliki unsur invers lain (misalnya c) selain dari b. Maka, a*c=e. Karena a*b=e, diperoleh persamaan a*c=a*b. Dengan menggunakan hukum pencoretan kiri diperoleh c=b. Hal ini kontradiksi dengan pengandaian kita bahwa c berlainan dengan b. (terbukti).

#CMIWW

Memahami Hukum Pencoretan

Hukum pencoretan merupakan hukum yang digunakan dalam melakukan penyederhanaan bentuk persamaan yang melibatkan operasi biner seperti operasi penjumlahan (+), perkalian (x), dsb. Contohnya sebagai berikut.

2x + 4= 6

Menerapkan hukum pencoretan untuk menyelesaikan persamaan tersebut, dapat dilakukan dengan cara sebagai berikut.

2x + 4 = 6
2x + 4 = 2 + 4
2x = 2
2x = 2.1
x = 1

Perhatikan di atas, 6 dirubah menjadi 2 + 4 agar menjadi 2x + 4 = 2 + 4 sehingga hukum pencoretan kanan untuk operasi penjumlahan dapat dilakukan. Setelah dilakukan pencoretan maka bentuk persamaannya menjadi 2x=2. Agar hukum pencoretan kiri untuk operasi perkalian juga dapat digunakan, 2 dirubah menjadi 2.1 sehingga 2x=2 berubah menjadi 2x=2.1. Dengan menerapkan hukum pencoretan kiri diperoleh x=1.

Untuk lebih jelasnya, berikut ini diberikan definisnya.

Definisi:

1. Suatu himpunan A terhadap operasi * dikatakan memenuhi hukum pencoretan kiri jika a*b=a*c mengakibatkan b=c.

2. Suatu himpunan A dengan operasi * dikatakan memenuhi hukum pencoretan kanan jika b*a=c*a mengakibatkan b=c.

Catatan: Untuk himpunan A yang komutatif, jika memenuhi hukum pencoretan kiri, pasti memenuhi hukum pencoretan kanan karena a*b=b*a dan a*c=c*a sehingga jika a*b=a*c yang mengakibatkan b=c maka untuk b*a=c*a juga mengakibatkan b=c.

Hasil penting berikut ini adalah jaminan suatu himpunan memenuhi hukum pencoretan kiri dan kanan tanpa melihat apakah himpunan tersebut komutatif atau tidak.

"Jika A suatu grup maka A memenuhi hukum pencoretan kiri dan hukum pencoretan kanan"

Bukti:

Ambil sebarang a, b, c, f, g, dan h $\in A$. Jika a*b=a*c dan g*f=h*f akan diperlihatkan b=c dan g=h.

Karena A grup maka terdapat a' dan f' sedemikian hingga a'*a=a*a'=e dan f*f'=f'*f=e dimana e unsur identitas terhadap operasi *. Maka,

a*b=a*c
a'*(a*b)=a'(a*c)
(a'*a)*b=(a'*a)*c
e*b=e*c
b=c.

g*f=h*f
(g*f)*f'=(h*f)f'
g*(f*f')=h*(f*f')
g*e=h*e
g=h
(Terbukti)

Contoh-contoh:
¤ Himpunan bilangan asli dengan operasi perkalian memenuhi hukum pencoretan kiri dan kanan sekaligus karena pada himpunan tersebut dengan operasi perkalian berlaku sifat komutatif.

¤ Karena (Z, +) adalah grup maka berlaku hukum pencoretan kiri dan kanan.

Latihan: Coba perlihatkan apakah himpunan matriks 2x2 bilangan riil dengan operasi perkalian matriks memenuhi atau tidak memenuhi hukum pencoretan kiri dan hukum pencoretan kenan.

Cara Membuktikan Suatu Himpunan Beserta Operasinya adalah Grup

Suatu himpunan misalnya (himpunan G) dengan suatu operasi (misalnya operasi bintang (*) yang didefinisikan pada himpunan G) adalah Grup (atau dengan kata lain (G,*) membentuk grup) jika (G,*) memenuhi empat sifat berikut ini.

1) Tertutup
2) Asosiatif
3) Identitas
4) Invers

Untuk mengingat ke empat sifat ini, Anda bisa memberi singkatannya secara berurutan, misalnya TERAS IDENVERS.

Pada pemabahasan sebelumnya, telah dijelaskan secara khusus bagaimana cara Membuktikan Sifat Tertutup dari Suatu Himpunan terhadap Operasinya yang didefinisikan pada himpunan tersebut bahwa untuk setiap a dan b aggota di G harus berlaku a*b anggota di G juga. Selanjutnya, untuk membuktikan apakah berlaku sifat asosiatif atau tidak, sangat sederhana untuk dilakukan yaitu cukup mengambil sebarang 3 anggota di dalam himpunan G misalnya a, b, dan c, kemudian diperlihatkan apakah (a*b)*c=a*(b*c). Jika memenuhi, dikatakan bahwa berlaku sifat asosiatif. Sebagai contoh, pada himpunan bilangan bulat berlaku sifat asosiatif penjumlahan yaitu (a+b)+c=a+(b+c), untuk a, b, c bilangan bulat.

Pada kesempatan ini, akan dibahas bagaimana membuktikan suatu himpunan bersama operasinya apakah memenuhi sifat identitas atau sifat invers karena kedua hal ini berkaitan. Kita tidak akan mengetahui invers tanpa mengetahui unsur identitasnya.

Membuktikan Sifat Identitas dari Suatu Himpunan Sesuai Operasinya

Untuk membuktikan sifat identitas, harus dapat menemukan suatu unsur dalam G (biasa disimbolkan dengan e) sehingga untuk semua g anggota dalam G jika dioperasikan dengan suatu operasi * dengan unsur e tersebut, berlaku g*e=e*g=g. Jadi, ingat bahwa e harus merupakan anggota himpunan G juga, g*e=g dan e*g=g.

Terdapat suatu kesulitan dalam hal menemukan unsur identitasnya ketika kita akan membuktikan sifat identitas. Oleh karena itu, dapat dilakukan dengan cara menduga suatu unsur identitas dalam G (misal f dimana f $ \in G $), kemudian mengujinya apakah untuk setiap g dalam G berlaku g*f=f*g=g, jika ia maka f disebut unsur identitas dalam G terhadap operasi *. Operasi bintang maksudnya adalah suatu operasi tertentu yang didefinisikan pada suatu himpunan G. Untuk lebih jelasnya, perhatikan contoh-contoh berikut ini!

Misal Z himpunan bilangan bulat dan + adalah operasi penjumlahan yang biasa, kita tahu bahwa sebarang a bilangan bulat jika dijumlahkan dengan 0 yakni a+0 atau 0+a pasti menghasilkan a (a+0=0+a=a). Karena keberadaan 0 ini yang merupakan anggota himpunan bilangan bulat juga, maka kita katakan 0 adalah unsur identitas terhadap operasi penjumlahan biasa pada bilangan bulat. Jadi, kita katakan himpunan bilangan bulat dengan operasi + ditulis (Z,+) memenuhi sifat identitas. Begitu juga untuk operasi x biasa bahwa unsur identitas terhadap operasi x biasa adalah 1 karena untuk setiap a bilangan bulat berlaku ax1=1xa=a.

Himpunan bilangan real terhadap operasi + atau x juga memenuhi sifat identitas karena sebarang bilangan real ditambahkan dengan 0 atau dikalikan dengan 1 pasti menghasulkan bilangan real itu juga dan kita tahu 0 dan 1 merupakan anggota dalam himpunan bilangan real.

Intinya, kita harus mampu menduga unsur identitasnya (e $\in G $), kemudian menguji apakah untuk setiap g anggota G berlaku g*e=e*g=g.

Misalkan G={1, -1, i, -i}, tentukan apakah G memiliki unsur idenditas terhadap operasi perkalian biasa!

Dengan memperhatikan setiap anggota G, kita menduga bahwa unsur identitasnya terhadap operasi perkalian adalah 1 karena untuk setiap g $\in$ G berlaku gx1=1xg=g, yakni 1x1=1, (-1)x1=1x(-1)=-1, ix1=1xi=i, (-i)x1=1x(-i)=-i.

Untuk pembaca: Apakah, G juga memiliki unsur identitas terhadap operasi penjumlahan yang biasa?

Membuktikan Sifat Invers dari Suatu Himpunan Sesuai Operasinya

Selanjutnya akan dibahas bagaimana membuktikan sifat invers. Kita pahami dulu apa yang dimaksud dengan invers. Kita telah mengetahui bahwa inversnya 2 terhadap operasi penjumlahan adalah -2, karena 2+(-2)=(-2)+2=0 sedangkan inversnya 2 terhadap operasi perkalian adalah 1/2 karena 2 x 1/2=1/2 x 2=1. Jadi tergantung operasinya apa dan identitasnya. Oleh karena itu untuk membuktikan sifat invers untuk suatu (G,*) dilakukan dengan cara:

" Mengambil sebarang anggota g dalam himpunan G, kemudian menentukan invers dari g yang dimisalkan dengan g', g' juga harus merupakan anggota G sehingga g*g'=g'*g=e. Artinya, untuk setiap g anggota G terdapat g' sehingga g*g'=g'*g=e. "

Perhatikan contoh berikut ini!

Misal G adalah himpunan bilangan bulat atau G=Z. Pada bahasan sebelumnya di atas, unsur identitas G terhadap operasi penjumlahan adalah 0 (e=0). Pertanyaan yang timbul sekarang, apakah (G,+) memenuhi sifat invers?

Ambil sebarang a $\in G$, akan ditunjukkan bahwa untuk setiap a, terdapat a' $\in G$ sehingga a+a'=a'+a=0.

Perhatikan bahwa a+(-a)=0 dan (-a)+a=0, jadi a'=-a. Karena -a juga bilangan bulat maka -a merupakan anggota di G. Oleh karena itu, kita simpulkan (G,+) memenuhi sifat invers.

Untuk pembaca: Apakah himpunan bilangan bulat memenuhi sifat invers terhadap operasi perkalian?

Semoga bermanfaat.

Membuktikan Sifat Tertutup dari Suatu Himpunan terhadap Operasinya

Suatu himpunan misalnya (himpunan G) dengan suatu operasi (misalnya operasi bintang (*) yang didefinisikan pada himpunan G) adalah Grup (atau dengan kata lain (G,*) membentuk grup) jika memenuhi empat sifat berikut ini.

1) Tertutup
2) Asosiatif
3) Identitas
4) Invers

Membuktikan Sifat Tertutup dari Suatu Himpunan terhadap Operasinya

Untuk membuktikan sifat tertutup, harus dapat ditunjukkan bahwa semua anggota dalam himpunan G jika dioperasikan satu sama lainnya dengan operasi * maka menghasilkan anggota di himpunan G juga. Artinya bahwa, jika dua anggota sebarang dalam G dioperasikan dengan operasi * maka hasil operasinya juga merupakan anggota di G. Hal ini sulit dilakukan apabila banyaknya anggota di G tidak berhingga. Sehingga, apabila jumlah anggota di himpunan G tak berhingga maka cara membuktikan sifat tertutup adalah sebagai berikut.

Pertama-tama, ambil sebarang dua anggota dalam himpunan G (misalnya a dan b). Selanjutnya, operasikan dengan operasi * yakni a*b. Kita jalankan sampai kita mendapatkan hasil misalnya c sehingga c memenuhi syarat keanggotaan himpunan G, karena itu kita simpulkan bahwa a*b=c merupakan anggota G. Dengan demikian, (G,*) bersifat tertutup

Untuk lebih jelasnya, perhatikan contoh-contoh berikut ini!

Misal Z himpunan bilangan bulat dan + adalah operasi + biasa, kita tahu bahwa sebarang a dan b bilangan bulat jika dijumlahkan yakni a+b pasti menghasilkan bilangan bulat juga sehingga kita katakan himpunan bilangan bulat dengan operasi + ditulis (Z,+) memenuhi sifat tertutup. Begitu juga untuk operasi x biasa.

Himpunan bilangan real terhadap operasi + atau x juga memenuhi sifat tertutup karena sebarang dua bilangan real ditambahkan atau dikalikan pasti bilangan real juga.

Pertanyaannya, apakah Q himpunan bilangan rasional, juga tertutup pada operasi + dan x? Sekarang mari kita lihat bagaimana caranya menunjukan sifat tertutup. Kita tahu bahwa bilangan rasional adalah bilangan yang dapat dinyatakan dalam bentuk a/b diamana a, b adalah bilangan bulat dan b#0. Jadi, himpunan bilangan rasional kita tuliskan dengan Q={a/b : b#0, a, b $ \in Z $}. Untuk membuktikan (Q,+) dan (Q,x) memenuhi sifat ketertutupan adalah:

"Ambil sebarang x, y anggota Q akan ditunjukan bahwa x+y dan x.y $\in Q$. Karena x dan y bilangan rasional maka masing-masing dapat dinyatakan dalam bentuk p/q dan r/s dimana p, q, r, s bilangan bulat dan q dan s tak nol. Perhatikan bahwa hasil dari p/q + r/s dan p/q x r/s juga merupakan bilangan rasional jadi kita simpulkan (Q,+) dan (Q, x) bersifat tertutup."

p/q + r/s=(ps+rq)/rs

p/q + r/s= pr/qs

Perhatikan bahwa ps+rq adalah bilangan bulat (berdasarkan contoh sebelumnya) dan rs tidak sama dengan 0 sehingga (ps+rq)/rs merupakan bilangan rasional. Begitu juga untuk pq/rs merupakan bilangan rasional.

Bagaimana sudah mengerti? Intinya, kita harus menunjukan bahwa untuk sebarang a, b anggota di G maka a*b juga anggota di G. Ingat bahwa operasi * merupakan operasi biner tertentu (operasi biner yaitu operasi yang memerukan dua buah unsur dalam suatu himpunan) yang didefinisikan untuk himpunan G, bisa operasi +, x, dll. Jadi, bisa yang lain dong? Iya, misal: a*b=a+b-2ab, sehingga untuk a=3 dan b=4 maka 3*4=3+4-2(3)(4)=7-24=-17.

Untuk pembaca: apakah operasi * yang didefinisikan oleh a*b=a+b-2ab tertutup pada himpunan bilangan bulat, himpunan bilangan rasional, dan himpunan bilangan real?

Teorema-Teorema Grup

Setelah memahami Definisi Grup dan Cara Membuktikan Suatu Himpunan Beserta Operasinya adalah Grup atau tidak, sekarang marilah perhatikan teorema-teorema berikut.

Teorema 1
Jika (G,*) adalah suatu Grup maka berlaku :

i) $(a^{-1})^{-1}=a$ untuk setiap $a \in G$

ii) $(a*b)^{-1}=b^{-1}*a^{-1}$ untuk setiap $a, b \in G$

Sebelum kita buktikan, pahami dululah maksudnya. Contoh Misal kita punya himpunan bilangan bulat (Z) anggotanya { . . . , -3, -2, -1, 0 , 1, 2, 3, . . .} telah dibuktikan pada tulisan sebelumnya bilangan bulat dengan operasi penjumlahan biasa (+) membentuk grup kita tulis aja (Z,+) . Sekarang karena (Z,+) grup maka berdasarkan Teorema 1 pasti sebarang anggota a di Z berlaku $(a^{-1})^{-1}=a$. Contoh a=3 invers penjumlahan dari a=3 adalah $a^{-1}=-3$ sekarang kita lihat bahwa $(a^{-1})^{-1}=3$ karena invers penjumlahan dari -3 adalah 3.

Untuk yang bagian ii) kita coba misal a=3 dan b=4 maka $(a+b)^{-1}=-b+(-a)=-4+(-3)=-7$. Ternyata benar ya invers penjumlahan dari (3+4) adalah -7.

Catatan: $a^{-1}=-a$ karena operasi yang kita gunakan adalah operasi + biasa. Kalau operasi yang kita gunakan adalah perkalian biasa (x) maka $a^{-1}=1/a$. Kalau belum faham, fahami definisi grup dulu hehe.

Bukti Teorema 1

i) Karena (G, *) Grup maka perhatikan: $(a^{-1})^{-1}*a^{-1}=e$ dan pada sisi lainnya $a*a^{-1}=e$, dari sini kita simpulkan $(a^{-1})^{-1}=a$.

ii Karena (G,*) grup maka:
1) $(a*b)^{-1}*(a*b)=e$ dan
2) $(b^{-1}*a^{-1})*(a*b)=b^{-1}*(a^{-1}*a)*b$

$=b^{-1}*e*b=(b^{-1}*e)*b=b^{-1}*b=e$. 
Jadi berdasarkan 1) dan 2) $(a*b)^{-1}=b^{-1}*a^{-1}$

Pada tulisan selanjutkan akan kita bahas hukum pencoretan kiri/kanan dan ketunggalan solusi. Ditungguh ya hehe

Definisi Grup

Jika sebuah himpunan tak-kosong G ($G \neq \varnothing$), G adalah grup, jika pada himpunan G didefinisikan suatu operasi tertentu (*) sedemikian sehingga:

1) Jika $\forall a,b \in G$ maka $a*b \in G$. (Bersifat tertutup)

2) Jika $\forall a, b, c \in G$ maka $(a*b)*c=a*(b*c)$ (Bersifat Asosiatif)

3) $\forall a \in G$ $\exists e \in G$ sehingga berlaku $e*a=a*e=a$ (Ada Unsur Identitas)

4) $\forall a \in G$ $\exists a^{-1} \in G$, sehingga $a*a^{-1}=a^{-1}*a=e$ (Mempunyai Invers)

Contoh: Apakah Himpunan bilangan bulat $Z$ dengan operasi $+$ adalah Grup?

Jawab:
1) Tertutup, karena sebarang bilangan bulat jika dijumlahkan dengan bilangan bulat hasilnya juga bilangan bulat.

2) Asosiatif, seperti yang kita ketahui bahwa penjumlahan pada bilangan bulat, salah satu sifat operasi yang dimiliki adalah asosistif. (Contoh: $(2+3)+4=2+(3+4)$)

3)Apakah ada unsur identitas? Iya yaitu $0$ karena sebarang bilangan bulat dijumlahkan dengan bilangan nol (0) adalah bilangan bulat itu sendiri. (Contoh: 2+0=2)

4)Apakah untuk setiap anggota himpunan bilangan bulat ada inversnya? Ambil sebarang $a \in Z$ yang memenuhi $a+a^{-1}=e=0$, sehingga diperoleh inversnya $-a$ sehingga $a+(-a)=0$. (contoh: 2+(-2)=0 jadi invers dari 2 adalah -2)

Jadi $Z$ dengan opeasi $+$ adalah grup.

Latihan Soal Grup:
1. Apakah $(R,.)$ adalah grup?

2. Tunjukkan bahwa $(Q,+)$ adalah Grup!

R: Real
Q: Rasional
. : perkalian biasa
$\forall$ : Untuk setiap (semua)
$\exists$ : Terdapat/ada

Kategori Lainnya

Contact Form

Name

Email *

Message *

Copyright © Matematika Ku Bisa. All rights reserved. Template by CB. Theme Framework: Responsive Design