Belajar Matematika Online

IXL Math On IXL, math is more than just numbers. With unlimited questions, engaging item types, and real-world scenarios, IXL helps learners experience math at its most mesmerizing! Pre-K skills Represent numbers - up to 5 Inside and outside Classify shapes by color Long and short Wide and narrow See all 77 pre-K skills Kindergarten skills Fewer, more, and same Read clocks and write times Seasons Count money - pennies through dimes Shapes of everyday objects I See all 182 kindergarten skills First-grade skills Counting tens and ones - up to 99 Hundred chart Subtraction facts - numbers up to 10 Read a thermometer Measure using an inch ruler See all 210 first-grade skills Second-grade skills Counting patterns - up to 1,000 Greatest and least - word problems - up to 1,000 Compare clocks Create pictographs II Which customary unit of volume is appropriate? See all 287 second-grade skills Third-grade skills Convert between standard and expanded form Count equal groups Estimate sums Show fractions: area models Find equivalent fractions using area models See all 384 third-grade skills Fourth-grade skills Addition: fill in the missing digits Divide larger numbers by 1-digit numbers: complete the table Objects on a coordinate plane Circle graphs Place values in decimal numbers See all 340 fourth-grade skills Fifth-grade skills Least common multiple Multiply fractions by whole numbers: word problems Sale prices Find start and end times: word problems Parts of a circle See all 347 fifth-grade skills Sixth-grade skills Compare temperatures above and below zero Which is the better coupon? Evaluate variable expressions with whole numbers Classify quadrilaterals Create double bar graphs See all 321 sixth-grade skills Seventh-grade skills Solve percent equations Arithmetic sequences Evaluate multi-variable expressions Identify linear and nonlinear functions Pythagorean theorem: word problems See all 289 seventh-grade skills Eighth-grade skills Write variable expressions for arithmetic sequences Add and subtract polynomials using algebra tiles Add polynomials to find perimeter Multiply and divide monomials Scatter plots See all 317 eighth-grade skills Algebra 1 skills Write and solve inverse variation equations Write an equation for a parallel or perpendicular line Solve a system of equations by graphing Solve a system of equations using substitution Rational functions: asymptotes and excluded values See all 309 Algebra 1 skills Geometry skills Triangle Angle-Sum Theorem Proving a quadrilateral is a parallelogram Properties of kites Similarity of circles Perimeter of polygons with an inscribed circle See all 221 Geometry skills Algebra 2 skills Multiply complex numbers Product property of logarithms Find the vertex of a parabola Write equations of ellipses in standard form from graphs Reference angles See all 322 Algebra 2 skills Precalculus skills Identify inverse functions Graph sine functions Convert complex numbers between rectangular and polar form Find probabilities using two-way frequency tables Use normal distributions to approximate binomial distributions See all 261 Precalculus skills Calculus skills Find limits using the division law Determine end behavior of polynomial and rational functions Determine continuity on an interval using graphs Find derivatives of polynomials Find derivatives using the chain rule I See all 97 Calculus skills Mathematics is a persistent source of difficulty and frustration for students of all ages. Elementary students spend years trying to master arithmetic. Teens struggle with the shift to algebra and its use of variables. High-school students must face diverse challenges like geometry, more advanced algebra, and calculus. Even parents experience frustration as they struggle to recall and apply concepts they had mastered as young adults, rendering them incapable of providing math help for their children. Whether you need top Math tutors in Boston, Math tutors in Detroit, or top Math tutors in Dallas Fort Worth, working with a pro may take your studies to the next level. The truth is, everyone struggles with math at one time or another. Students, especially at the high-school level, have to balance challenging coursework with the demands of other courses and extracurricular activities. Illness and school absences can leave gaps in a student’s instruction that lead to confusion as more advanced material is presented. Certain concepts that are notoriously difficult to master, such as fractions and the basics of algebra, persist throughout high school courses, and if not mastered upon introduction, can hinder a student’s ability to learn new concepts in later courses. Even students confident in their math skills eventually find a course or concept incomprehensible as they reach advanced math classes. In other words, no matter what your age or ability, everyone eventually needs help with math. Varsity Tutors offers resources like free Math Diagnostic Tests to help with your self-paced study, or you may want to consider a Math tutor. Varsity Tutors is happy to offer free practice tests for all levels of math education. Students can take any one of hundreds of our tests that range from basic arithmetic to calculus. These tests are conveniently organized by course name (e.g. Algebra 1, Geometry, etc.) and concept (e.g. “How to graph a function”). Students can select specific concepts with which they are struggling or concepts that they are trying to master. Students can even use these concept-based practice tests to identify areas in which they may not have realized they were struggling. For instance, if a student is struggling with his or her Algebra 1 course, he or she can take practice tests based on broad algebra concepts such as equations and graphing and continue to practice in more specific subcategories of these concepts. In this way, students can more clearly differentiate between those areas that they fully understand and those that could use additional practice. Better yet, each question comes with a full written explanation. This allows students to not only see what they did wrong, but provides the student with step-by-step instructions on how to solve each problem. In addition to the Math Practice Tests and Math tutoring, you may also want to consider taking some of our Math Flashcards. Varsity Tutors’ Learning Tools also offer dozens of Full-Length Math Practice Tests. The longer format of the complete practice tests can help students track and work on their problem-solving pace and endurance. Just as on the results pages for the concept-specific practice tests, the results for these longer tests also include a variety of scoring metrics, detailed explanations of the correct answers, and links to more practice available through other Learning Tools. These free online Practice Tests can assist any student in creating a personalized mathematics review plan, too, as the results show which of the concepts they already understand and which concepts may need additional review. After reviewing the skills that need work, students can take another Full-Length Math Practice Test to check their progress and further refine their study plan. Once a student creates a Learning Tools account, they can also track their progress on all of their tests. Students can view their improvement as they begin getting more difficult questions correct or move on to more advanced concepts. They can also share their results with tutors and parents, or even their math teacher. Create a Varsity Tutors Learning Tools account today, and get started on a path to better understanding math!
Mau EBOOK "MATEMATIKA KU BISA"? KLIK DI SINI!
Hasil Pencarian di Blog Matematika Ku Bisa
Showing posts with label Uji Statistik. Show all posts
Showing posts with label Uji Statistik. Show all posts

Rumus Statistik Uji Homogenitas

Pengujian homogenitas bertujuan untuk mengetahui apakah objek (tiga sampel atau lebih) yang diteliti mempunyai varian yang sama. Metode yang kami gunakan dalam melakukan uji homogenitas pada penelitian yang berjudul “Pengaruh Pemahaman Konsep Limit dan Turunan Fungsi terhadap Hasil Belajar Siswa Kelas XII IPA SMAN 1 Wawotobi T.A. 2016/2017” adalah metode varian terbesar dibandingkan dengan varian terkecil (Siregar, 2013: 167).

Kelompok yang kami uji terdiri dari 5 kelas pararel, sehingga hipotesis dalam uraian kalimat adalah sebagai berikut.

H0: Tidak ada perbedaan varian dari beberapa kelompok data
Ha: Ada perbedaan varian dari beberapa kelompok data

Hipotesis statistik:
H0:   $σ_1^2=σ_2^2=σ_3^2=σ_4^2=σ_5^2$
Ha: $σ_i^2≠σ_j^2; \ i≠j $

Kriteria pengujian: apabila $F_{hitung}  ≤ F_{tabel}$  maka H0 ditolak.
  • $F_{hitung}  = \frac{varian \  terbesar}{varian \ terkecil}$
  • $F_{tabel} (0.05, V1_{(n-1)},V2_{(n-1)})$ dengan V1 pembilang dan V2 penyebut. 
Dengan menggunakan aplikasi SPSS, kami menggunakan   uji levene untuk menguji homogenitas data. Misalnya, setelah diperoleh output di bawah ini, diketahui signifikansi sebesar 0.128. Nilai ini menunjukkan bahwa nilai sig.=0.128>α=0.05, maka dapat disimpulkan bahwa kelima kelompok data mempunyai varian yang sama.

Test of Homogeneity of Variances
Nilai UH
Levene Statistic df1 df2 Sig.
1.822 4 141 .128

Rumus Uji F Statistik Parametrik

Uji F merupakan salah satu uji hipotesis penelitian yang  digunakan untuk mengetahui ada atau tidak adanya pengaruh yang signifikan secara simultan (bersama-sama) variabel bebas terhadap variabel terikat. Uji F termasuk dalam uji statistik paramatrik.

Adapun satu dari tiga hipotesis yang admin uji dalam penelitian adalah:

$H_0$: Tidak terdapat pengaruh yang signifikan secara simultan antara pemahaman konsep limit dan turunan fungsi terhadap hasil belajar integral substitusi siswa kelas XII IPA SMAN 1 Wawotobi.
$H_1$: Terdapat pengaruh yang signifikan secara simultan antara pemahaman konsep limit dan turunan fungsi terhadap hasil belajar integral substitusi siswa kelas XII IPA SMAN 1 Wawotobi.

Hipotesis statistik:
$H_0:  β=0$
$H_1:  β≠0$

Untuk menguji hipotesis di atas, gunakan uji-F dengan rumus:

$F_{hitung}= \frac{(R_{X_1,X_2,Y})^2 (n-m-1)}{m(1- R ^2 _{X_1,X_2,Y})  }$

Apabila F hitung > F tabel maka $H_0$ ditolak dan jika F hitung  ≤ F tabel maka $H_0$ diterima. Nilai $F_{tabel}=F_{(α)(dka, dkb )}$ dapat dicari dengan menggunakan tabel F dengan dka=jumlah variabel bebas dan dbk=n-m-1. 

Demikian postingan kami tentang Rumus Uji F Statistik 

Sumber kutipan: Batauga, Fredi. “Pengaruh Pemahaman Konsep Limit dan Turunan Fungsi terhadap Hasil Belajar Integral Substitusi Siswa Kelas XII IPA SMAN 1 Wawotobi”. Skripsi. Unaaha: Universitas Lakidende.
IKLAN!
Sekedar info, bagi Anda yang butuh jasa analisis atau menginginkan file input data di MS exelnya untuk analisis data statistik uji F seperti di atas, silahkan menghubungi kami. Terima kasih telah berkunjung.

Rumus Uji t Statistik Parametrik

Rumus Uji t Statistik Parametrik
Uji t merupakan salah satu uji yang digunakan untuk uji hipotesis penelitian untuk mengetahui ada atau tidak adanya pengaruh yang signifikan secara parsial variabel bebas terhadap variabel terikat. Uji t termasuk dalam uji statistik paramatrik.
Adapun dua dari tiga hipotesis yang admin uji dalam penelitian adalah:
1) H0: Tidak terdapat pengaruh yang signifikan secara parsial antara pemahaman konsep limit fungsi terhadap hasil belajar integral substitusi siswa kelas XII IPA SMAN 1 Wawotobi.
H1: Terdapat pengaruh yang signifikan secara parsial antara pemahaman konsep limit fungsi terhadap hasil belajar integral substitusi siswa kelas XII IPA SMAN 1 Wawotobi.
Hipotesis statistik:
$H_0: \ \beta_1 =0$
$H_1: \ \beta_1 \neq 0$
2) H0: Tidak terdapat pengaruh yang signifikan secara parsial antara pemahaman konsep turunan fungsi terhadap hasil belajar integral substitusi siswa kelas XII IPA SMAN 1 Wawotobi.
H1: Terdapat pengaruh yang signifikan secara parsial antara pemahaman konsep turunan fungsi terhadap hasil belajar integral substitusi siswa kelas XII IPA SMAN 1 Wawotobi.
Hipotesis statistik:
$H_0: \ \beta_2 =0$
$H_1: \ \beta_2 \neq 0$
Untuk menguji kedua hipotesis di atas, admin gunakan uji-t dengan rumus:
$t_i=\frac{b_i}{S_{b_i}^2 }$
Jika –t tabel ≤ t hitung ≤ t tabel maka H0 diterima dan jika t hitung > t tabel maka H0 ditolak (Siregar, 2013: 408-410).
Untuk mencari nilai dari $S_{b_i}^2$  gunakan rumus berikut ini.
t 1
Keterangan :
$b_i$ = nilai konstanta
$S_{b_i}$ = standar error
$S_{X_1.X_2 }$= standar deviasi regresi berganda
m = Jumlah variabel bebas
n = jumlah sampel = Variavel bebas pertama
X2 = Variabel bebas kedua
Y = Variabel terikat
Demikian postingan kami tentang Rumus Uji t Statistik
Sumber kutipan: Batauga, Fredi. “Pengaruh Pemahaman Konsep Limit dan Turunan Fungsi terhadap Hasil Belajar Integral Substitusi Siswa Kelas XII IPA SMAN 1 Wawotobi”. Skripsi. Unaaha: Universitas Lakidende.
IKLAN!
Sekedar info, bagi Anda yang butuh jasa analisis atau menginginkan file input data di MS exelnya untuk analisis data statistik uji t seperti di atas, silahkan menghubungi kami. Terima kasih telah berkunjung.

Rumus Statistik Uji Reliabilitas

Rumus Statistik Uji Reliabilitas

Uji reliabilitas dalam penelitian dilakukan untuk menguji seberapa tinggi konsistensi hasil pengukuran instrumen penelitian yang dilakukan. Dalam penelitian pendidikan matematika yang saya lakukan dengan judul “Pengaruh Pemahaman Konsep Limit dan Turunan Fungsi terhadap Hasil Belajar Matematika” di salah satu SMA negeri Kab. Konawe,  Instrumen penelitian yang admin gunakan berupa tes essay dan pilihan ganda sehingga rumus uji reliabilitas yang admin gunakan ada dua, yang akan admin jelaskan berikut ini.

“Untuk mengetahui reliabilitas instrumen soal bentuk esai digunakan teknik Alpha Cronbach dengan langkah langkah sebagai berikut.
  1.  Menentukan nilai varian setiap butir pertanyaan:
  2. Menentukan nilai varian total:
  3. Menentukan reliabilitas instrumen:
Jika r11 > 0,6 maka instrumen penelitian tersebut reliabel (Siregar, 2013: 90).

Keterangan :
n = Jumlah sampel
$X_i$= Jawaban responden untuk setiap butir pertanyaan
$\Sigma Y$= Total jawaban responden untuk setiap butir pertanyaan
$\sigma_t^2$= Varian total
$\Sigma \ \sigma_b^2$= Jumlah varian butir
k = Banyaknya butir pertanyaan
r11 = Koefisien realibilitas instrumen

Adapun untuk mengetahui reliabilitas instrumen soal bentuk pilihan ganda dengan banyak soal genap digunakan teknik Spearman Brown dengan rumus:
$r_{11}=\frac{2R_{XY}}{1+ R_{XY}}$
dimana X skor belahan ganjil dan Y skor belahan genap. Nilai rtabel dapat dilihat di tabel product moment dengan ketentuan $r_{( \alpha , \ n-2)}$. Apabila $r_{11} > r_{tabel}$, instrumen penelitian dikatakan reliabel (Siregar, 2013: 97-100).”

Demikian postingan kami tentang Rumus Statistik Uji Reliabilitas.

Sumber kutipan: Batauga, Fredi. “Pengaruh Pemahaman Konsep Limit dan Turunan Fungsi terhadap Hasil Belajar Integral Substitusi Siswa Kelas XII IPA SMAN 1 Wawotobi”. Skripsi. Unaaha: Universitas Lakidende.

Rumus Statistik Uji Validitas

Rumus Statistik Uji Validitas
Uji validitas dalam penelitian dilakukan untuk menguji valid atau tidaknya instrumen penelitian yang dilakukan. Khususnya dalam penelitian pendidikan matematika yang saya lakukan dengan judul “Pengaruh Pemahaman Konsep Limit dan Turunan Fungsi terhadap Hasil Belajar Matematika” di salah satu SMA negeri Kab. Konawe.

Instrumen penelitian yang saya gunakan berupa tes essay dan pilihan ganda sehingga rumus uji validitas yang saya gunakan ada dua, yang akan saya jelaskan berikut ini.

Pada penelitian yang saya lakukan, instrumen penelitian yang digunakan dalam mengumpulkan data adalah tes. Penyusunan soal tes tersebut diawali dengan menentukan kompetensi dasar dan indikator yang akan diukur, menyusun kisi-kisi tes berdasarkan kompetensi dasar dan indikator yang dipilih, kemudian menyusun butir tes berdasarkan kisi-kisi yang dibuat. 

Sebelum digunakan pada sampel penelitian dalam hal ini saya menggambil satu kelas, dilakukan uji coba untuk mengetahui validitas setiap butir tes apakah layak untuk digunakan sebagai alat ukur yang baik, yaitu valid dan reliabel.

Untuk mengetahui validitas setiap butir soal esai dari instrumen tes tersebut digunakan rumus korelasi Product Moment:
rxy
Keterangan: 
rXY = Koefisien korelasi
X = Skor butir soal yang dicari validitasnya
Y = Skor total
n = Banyaknya responden

Nilai rXY yang diperoleh dibandingkan dengan nilai r pada Tabel Harga Kritis r Product Moment (rTabel) pada taraf signifikansi 5%. Jika rXY $\ge$ rTabel maka butir soal tersebut valid, sebaliknya jika rXY < rTabel maka butir soal tersebut tidak valid (Siregar, 2013: 77).

Untuk mengetahui validitas setiap butir soal pilihan ganda dari instrumen tes tersebut digunakan rumus korelasi point biserial:
r bis

Menurut Arikunto (2008: 80), makin tinggi koefisien yang dimiliki makin valid butir instrumen tersebut. Secara umum apabila koefisien korelasinya sudah lebih besar dari 0,3 maka butir instrumen tersebut sudah dikategorikan valid.

Demikian postingan kami tentang Rumus Statistik Uji Validitas.

Sumber kutipan: Batauga, Fredi. “Pengaruh Pemahaman Konsep Limit dan Turunan Fungsi terhadap Hasil Belajar Integral Substitusi Siswa Kelas XII IPA SMAN 1 Wawotobi”. Skripsi. Unaaha: Universitas Lakidende.

Rumus Statistik Uji Normalitas

Uji normalitas dalam penelitian dilakukan sebagai salah satu uji pra-syarat yang harus dilakukan untuk menggunakan suatu uji statistik parametrik, apakah data populasi berdistribusi normal atau tidak. Khususnya dalam penelitian pendidikan matematika yang saya lakukan dengan judul “Pengaruh Pemahaman Konsep Limit dan Turunan Fungsi terhadap Hasil Belajar Matematika” di salah satu SMA negeri Kab. Konawe, saya menggunakan dua uji statistik penelitian yaitu Uji-t dan Uji-F.

"Adapun uji normalitas yang admin gunakan adalah Uji Kolmogorov-Smirnov dengan langkah-langkah sebagai berikut.

a) Data hasil pengamatan disusun mulai dari nilai pengamatan terkecil sampai nilai pengamatan terbesar.
b) Dari nilai pengamatan tersebut kemudian disusun distribusi frekuensi kumulatif relatif, dan dinotasikan dengan Fa(Y).
c) Menghitung nilai dengan rumus $Z= \frac{Y- \mu}{ \sigma}$ dimana $\mu$ adalah mean dan $\sigma$ adalah standar deviasi.
d) Menghitung distribusi frekuensi kumulatif teoritis (berdasarkan arah kurva normal) dinotasikan dengan Fe(Y).
e) Menghitung selisih antara Fa(Y) dan Fe(Y).
f) Mengambil angka selisih maksimum dan dinotasikan dengan D.
D = maks |Fa(Y) – Fe(Y)|
g) Bandingkan nilai D yang diperoleh dengan $D_{(\alpha, \ n-1)}$ dari tabel nilai D untuk uji Kolmogorov-Smirnov. Kriteria pengujian: jika Dhitung ≤ Dtabel maka data berdistribusi normal (Siregar, 2013: 153-162). “

Demikian postingan kami tentang Rumus Statistik Uji Normalitas.

Sumber kutipan: Batauga, Fredi. “Pengaruh Pemahaman Konsep Limit dan Turunan Fungsi terhadap Hasil Belajar Integral Substitusi Siswa Kelas XII IPA SMAN 1 Wawotobi”. Skripsi. Unaaha: Universitas Lakidende.

Kategori Lainnya

Contact Form

Name

Email *

Message *

Copyright © Matematika Ku Bisa. All rights reserved. Template by CB. Theme Framework: Responsive Design