Belajar Matematika dan Bisnis Online

IXL Math On IXL, math is more than just numbers. With unlimited questions, engaging item types, and real-world scenarios, IXL helps learners experience math at its most mesmerizing! Pre-K skills Represent numbers - up to 5 Inside and outside Classify shapes by color Long and short Wide and narrow See all 77 pre-K skills Kindergarten skills Fewer, more, and same Read clocks and write times Seasons Count money - pennies through dimes Shapes of everyday objects I See all 182 kindergarten skills First-grade skills Counting tens and ones - up to 99 Hundred chart Subtraction facts - numbers up to 10 Read a thermometer Measure using an inch ruler See all 210 first-grade skills Second-grade skills Counting patterns - up to 1,000 Greatest and least - word problems - up to 1,000 Compare clocks Create pictographs II Which customary unit of volume is appropriate? See all 287 second-grade skills Third-grade skills Convert between standard and expanded form Count equal groups Estimate sums Show fractions: area models Find equivalent fractions using area models See all 384 third-grade skills Fourth-grade skills Addition: fill in the missing digits Divide larger numbers by 1-digit numbers: complete the table Objects on a coordinate plane Circle graphs Place values in decimal numbers See all 340 fourth-grade skills Fifth-grade skills Least common multiple Multiply fractions by whole numbers: word problems Sale prices Find start and end times: word problems Parts of a circle See all 347 fifth-grade skills Sixth-grade skills Compare temperatures above and below zero Which is the better coupon? Evaluate variable expressions with whole numbers Classify quadrilaterals Create double bar graphs See all 321 sixth-grade skills Seventh-grade skills Solve percent equations Arithmetic sequences Evaluate multi-variable expressions Identify linear and nonlinear functions Pythagorean theorem: word problems See all 289 seventh-grade skills Eighth-grade skills Write variable expressions for arithmetic sequences Add and subtract polynomials using algebra tiles Add polynomials to find perimeter Multiply and divide monomials Scatter plots See all 317 eighth-grade skills Algebra 1 skills Write and solve inverse variation equations Write an equation for a parallel or perpendicular line Solve a system of equations by graphing Solve a system of equations using substitution Rational functions: asymptotes and excluded values See all 309 Algebra 1 skills Geometry skills Triangle Angle-Sum Theorem Proving a quadrilateral is a parallelogram Properties of kites Similarity of circles Perimeter of polygons with an inscribed circle See all 221 Geometry skills Algebra 2 skills Multiply complex numbers Product property of logarithms Find the vertex of a parabola Write equations of ellipses in standard form from graphs Reference angles See all 322 Algebra 2 skills Precalculus skills Identify inverse functions Graph sine functions Convert complex numbers between rectangular and polar form Find probabilities using two-way frequency tables Use normal distributions to approximate binomial distributions See all 261 Precalculus skills Calculus skills Find limits using the division law Determine end behavior of polynomial and rational functions Determine continuity on an interval using graphs Find derivatives of polynomials Find derivatives using the chain rule I See all 97 Calculus skills Mathematics is a persistent source of difficulty and frustration for students of all ages. Elementary students spend years trying to master arithmetic. Teens struggle with the shift to algebra and its use of variables. High-school students must face diverse challenges like geometry, more advanced algebra, and calculus. Even parents experience frustration as they struggle to recall and apply concepts they had mastered as young adults, rendering them incapable of providing math help for their children. Whether you need top Math tutors in Boston, Math tutors in Detroit, or top Math tutors in Dallas Fort Worth, working with a pro may take your studies to the next level. The truth is, everyone struggles with math at one time or another. Students, especially at the high-school level, have to balance challenging coursework with the demands of other courses and extracurricular activities. Illness and school absences can leave gaps in a student’s instruction that lead to confusion as more advanced material is presented. Certain concepts that are notoriously difficult to master, such as fractions and the basics of algebra, persist throughout high school courses, and if not mastered upon introduction, can hinder a student’s ability to learn new concepts in later courses. Even students confident in their math skills eventually find a course or concept incomprehensible as they reach advanced math classes. In other words, no matter what your age or ability, everyone eventually needs help with math. Varsity Tutors offers resources like free Math Diagnostic Tests to help with your self-paced study, or you may want to consider a Math tutor. Varsity Tutors is happy to offer free practice tests for all levels of math education. Students can take any one of hundreds of our tests that range from basic arithmetic to calculus. These tests are conveniently organized by course name (e.g. Algebra 1, Geometry, etc.) and concept (e.g. “How to graph a function”). Students can select specific concepts with which they are struggling or concepts that they are trying to master. Students can even use these concept-based practice tests to identify areas in which they may not have realized they were struggling. For instance, if a student is struggling with his or her Algebra 1 course, he or she can take practice tests based on broad algebra concepts such as equations and graphing and continue to practice in more specific subcategories of these concepts. In this way, students can more clearly differentiate between those areas that they fully understand and those that could use additional practice. Better yet, each question comes with a full written explanation. This allows students to not only see what they did wrong, but provides the student with step-by-step instructions on how to solve each problem. In addition to the Math Practice Tests and Math tutoring, you may also want to consider taking some of our Math Flashcards. Varsity Tutors’ Learning Tools also offer dozens of Full-Length Math Practice Tests. The longer format of the complete practice tests can help students track and work on their problem-solving pace and endurance. Just as on the results pages for the concept-specific practice tests, the results for these longer tests also include a variety of scoring metrics, detailed explanations of the correct answers, and links to more practice available through other Learning Tools. These free online Practice Tests can assist any student in creating a personalized mathematics review plan, too, as the results show which of the concepts they already understand and which concepts may need additional review. After reviewing the skills that need work, students can take another Full-Length Math Practice Test to check their progress and further refine their study plan. Once a student creates a Learning Tools account, they can also track their progress on all of their tests. Students can view their improvement as they begin getting more difficult questions correct or move on to more advanced concepts. They can also share their results with tutors and parents, or even their math teacher. Create a Varsity Tutors Learning Tools account today, and get started on a path to better understanding math!

Ciri-ciri Bilangan yang Habis Dibagi

Waktu kita membagi kadang bingung, dengan angka yang banyak, bisa dibagi atau tidak ya. Sebenarnya ada cara yang mudah untuk mengetahuinya dan ga perlu menghitung dan mikir terlalu lama. Mau tahu, baca sampai selesai.

Suatu bilangan habis dibagi 2, ciri-cirinya adalah bilangan yang berakhiran (berangka satuan) 0, 2, 4, 6, 8. Dengan kata lain bilangan itu adalah bilangan genap.

Contoh: apakah 74 habis dibagi 2? Karena 74 merupakan bilangan genap (Ingat rumus untuk bilangan genap. Rumus untuk bilangan genap adalah 2k untuk sebarang k bilangan bulat. Sedangkan untuk bilangan ganjil yaitu 2k-1 untuk sebarang k bilangan bulat). Karena 74 memenuhi rumus bilangan genap, maka 74 habis dibagi 2. 

Suatu bilangan habis dibagi 3 apabila jumlah digit-digitnya habis dibagi 3.

Contoh: Apakah 213 habis dibagi 3? Karena 2 + 1 + 3 = 6 habis dibagi 3. Maka bilangan itu (213) habis dibagi 3. 

Suatu bilangan dapat dibagi 4 apabila dua digit terakhir habis dibagi 4. 

Contoh: Apakah 324 habis dibagi 4? Dua digit terakhir yaitu 24. Dan 24 habis dibagi 4. Sehingga 326 habis dibagi 4. 

Apakah 2006 habis dibagi 4? Tidak. Karena dua angka terahirnya yaitu 06. Sedangkan 06 tidak habis dibagi 4. Sehingga 2006 tidak habis dibagi 4. 

Apabila bilangan tersebut berakhiran 0 atau 5 maka habis dibagi 5. 

Contoh: Apakah 3255 habis dibagi 5? Digit terakhir adalah 5. Sehingga 3255 habis dibagi 5. 

Ciri Bilangan yang habis dibagi 6 adalah bilangan yang habis dibagi 3 dan habis dibagi 2. 

Contoh: apakah 234 habis dibagi 6? Karena 2 + 3 + 4 = 9 habis dibagi 3 dan bilangan itu genap. Maka 234 habis dibagi 6. 

Bila satuannya dikalikan 2, dan menjadi pengurang dari yang tersisa dimana hasilnya habis dibagi 7, maka bilangan itu habis dibagi 7. 

Contoh: apakah 5236 habis dibagi 7? Kita pisahkan 6 (satuannya), kemudian 523 – (6 × 2) = 511. 

Apakah 511 habis dibagi 7? 51 – (1 x 2) = 49. Karena 49 habis dibagi 7 maka 5236 habis dibagi 7. 

Apabila tiga digit terakhir habis dibagi 8. Contoh: apakah 3125 habis dibagi 8? Tiga digit terakhir yaitu 125 habis dibagi 8. Sehingga 3125 habis dibagi 8. 

Apabila jumlah angka-angkanya habis dibagi 9 maka bilangan tersebut habis dibagi 9. 

Contoh: apakah 819 habis dibagi 9? Jumlah digit-digitnya yaitu 8 + 1 + 9 = 18 habis dibagi 9 sehingga 819 habis dibagi 9. 

Jika angka satuannya adalah 0 maka bilangan tersebut habis dibagi 10. 

Contoh: apakah 8190 habis dibagi 10? Angka satuan=0, maka 8190 habis dibagi 10. 

Bilangan habis dibagi 11 yaitu jika bilangan tersebut merupakan kelipatan 11. 

Ciri bilangan habis dibagi 11 yaitu jika jumlah digitnya yang berganti tanda habis dibagi 11. 

Contohnya: Apakah 1234 habis dibagi 11? Maka yang kita lakukan adalah sebagai berikut. 

Karena 4 – 3 + 2 – 1 = 2 tidak habis dibagi 11, maka 1234 juga tidak habis dibagi 11.

Apakah 803 habis dibagi 11? Karena 3 – 0 + 8 = 11 habis dibagi 11 maka 803 habis dibagi 11. 

Ciri bilangan habis dibagi 13 adalah bilangan asal dipisahkan satuannya kemudian dikalikan 9 (multiplier dari 13). Dan bilangan yang setelah dipisahkan tadi dikurangi dengan 9 kali bilangan satuannya. Misalnya bilangan awal kita adalah abcdefg, maka ciri bilangan habis dibagi 13 adalah (abcdef) – 9g. Jika hasilnya habis dibagi 13, maka bilangan semula juga habis dibagi 13. 

Contoh: Apakah 3419 habis dibagi 13? 341 – 9(9) = 341 – 81 = 260. Karena 260 habis dibagi 13, maka 3419 habis dibagi 13. 

Kita coba angka yangg lebih besar. Misal Apakah 12818 habis dibagi 13? 
  • 1281 – 9(8) = 1281 – 72 = 1209 
  • 120 – 9(9) = 120 – 81 = 39. 
  • 39 habis dibagi 13, maka 12818 habis dibagi 13. 
Apabila angka satuannya adalah 0 atau 5 maka bisa dibagi 5. Jumlah angkanya habis dibagi 3.

Contoh: apakah 8190 habis dibagi 15? Angka satuan=0, Jumlah angkanya= 8+1+9+0=18 (habis dibagi 3), maka 8190 habis dibagi 15.

Ciri bilangan habis dibagi 17 adalah jika bilangan tersebut dipisahkan antara satuannya dan sisa angkanya, dimana jika sisa angkanya dikurangi dengan 5 kali satuannya habis dibagi 17.

Contohnya: apakah 153 habis dibagi 17?

  • Langkah pertama yaitu memisahkan bilangan tersebut dengan satuannya. 153 menjadi 15 dan 3. 
  • Kemudian kita lakukan langkah pada syarat tersebut. 15 – 3(5) = 0. 
  • Karena 0 habis dibagi 17, maka 153 juga habis dibagi 17. 
Contoh lain yang lebih panjang yaitu apakah 5338 habis dibagi 17?

Kita lakukan langkah-langkah yang telah diberikan sebelumnya.
533 – 8(5) = 493
49 – 3(5) = 34
Karena 34 habis dibagi 17, maka 5338 habis dibagi 17.

Ciri bilangan habis dibagi 19 yaitu jika satuannya dikalikan dua dan ditambahkan pada angka sisa (angka semula yang dibuang satuannya) habis dibagi 19.

Contoh: Apakah 209 habis dibagi 19? Secara perhitungan biasa, 209 habis dibagi 19. Karena 19 x 11 adalah 209. Sekarang bagaimana jika kita menggunakan ciri bilangan habis dibagi 19 menggunakan cara yang telah disebutkan di atas.

Kita perhatikan angka 209. Angka tersebut satuannya kita pisah. Diperoleh angka-angka baru yaitu 20 dan 9. Kemudian langkah selanjutnya yaitu angka satuan kita kalikan dua dan kita jumlahkan dengan angka yang lain yang telah dipisah tadi. Diperoleh, 20 + 9(2) = 28. Karena 38 habis dibagi 19, maka bilangan asal tadi juga habis dibagi 19. Sehingga, 209 habis dibagi 19.

Kita lanjutkan untuk contoh dengan angka yang lebih besar. Apakah 9937 habis dibagi 19? Kita lakukan langkah-langkah yang telah diberikan tadi. 933 + 7(2) = 1007. Tentunya sekarang kita dapatkan angka yang lebih kecil. Untuk mengecek apakah 1007 habis dibagi 19, maka kita lakukan langkah yang sama. Dengan cara yang sama, 100 + 7(2) = 144. Kita lanjutkan dengan mengecek apakah 114 habis dibagi 19. Kita peroleh, 11 + 4(2) = 19. Karena 19 habis dibagi 19, maka 114 habis dibagi 19. Dan diperoleh 1007 habis dibagi 19. Dan akhirnya 9937 juga habis dibagi 19.

Berlangganan Update Artikel Terbaru via Email:

No comments:

Post a Comment

Komentar yang tidak baik atau menampilkan segala hal yang tidak baik, tidak akan kami setujui atau akan kami hapus!

Ebook Berhitung Tanpa Meminta

Kontak Kami


Email *

Message *

Copyright © Matematika Ku Bisa. All rights reserved. Template by CB. Theme Framework: Responsive Design