Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan
(Diperbarui:
)
-
Posting Komentar
Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan - Matematika Ku Bisa - Turunan fungsi $f(x)\,$ di $x=a\,$ dinotasikan dengan $f^\prime (a) \, $ , didefinisikan sebagai:
$ f^\prime (a) = \displaystyle \lim_{ \Delta x \to 0 } \frac{f(a+\Delta x ) - f(a)}{\Delta x} \, \, $ jika limitnya ada.
atau bisa ditulis : $ f^\prime (a) = \displaystyle \lim_{ h \to 0 } \frac{f(a+ h ) - f(a)}{h} \, \, $ jika limitnya ada.
Bentuk $ f^\prime (a) \, $ dibaca " $ f \, $ aksen $ \, a $ ". Jika kita tuliskan $ x = a + h \, $ , maka $ h = x - a \, $ dan untuk $ h \to 0 \, $ maka $ x \to a $ . Sehingga definisi limit di atas bisa juga ditulis:
$ f^\prime (a) = \displaystyle \lim_{ h \to 0 } \frac{f(a+ h ) - f(a)}{h} = \displaystyle \lim_{ x \to a } \frac{f( x ) - f(a)}{x-a} $
Notasi Turunan
Turunan pertama dari $ y = f(x) \, $ di notasikan: $ f^\prime (x) \, $ atau $ y^\prime $
Turunan kedua dari $ y = f(x) \, $ di notasikan : $ f^{\prime \prime} (x) \, $ atau $ y^{\prime \prime} $
dan seterusnya.
Turunan pertama dari $ y = f(x) \, $ di notasikan: $ \frac{df(x)}{dx} \, $ atau $ \frac{dy}{dx} $
Turunan kedua dari $ y = f(x) \, $ di notasikan: $ \frac{d^2f(x)}{(dx)^2} \, $ atau $ \frac{d^2y}{(dx)^2} $
dan seterusnya.
Definisi atau pengertian Turunan Fungsi Secara Umum
Turunan fungsi $ f(x) \, $ untuk semua $ x \, $ dinotasikan dengan $ f^\prime (x) \, $ , didefinisikan sebagai:
$ f^\prime (x) = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \, \, $ jika limitnya ada.
Bentuk $ f^\prime (x) \, $ dibaca " $ f \, $ aksen $ \, x $ ".
Contoh Soal:
Tentukan turunan dari $ f(x) \, $ atau $ f^\prime (x) \, $ dari masing-masing fungsi berikut:
a). $ f(x) = 5x - 2 $
b). $ f(x) = x^2 + 2x $
c). $ f(x) = \sin x $
Penyelesaian: (Bentuk $ f^\prime (x) \, $ artinya turunan dari fungsi $ f(x) $)
a). $ f(x) = 5x - 2 $
$ \begin{align} f^\prime (x) & = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{(5(x+ h) - 2) - (5x-2)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{(5x + 5h - 2) - (5x-2)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{5h}{h} \\ & = \displaystyle \lim_{ h \to 0 } 5 \\ & = 5 \end{align} $
Jadi, turunannya : $ f^\prime (x) = 5 $
b). $ f(x) = x^2 + 2x $
$ \begin{align} f^\prime (x) & = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{ [(x+ h)^2 +2(x+ h)] - (x^2 + 2x) }{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{ [x^2 + 2xh + h^2 + 2x + 2h] - (x^2 + 2x) }{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{ h^2 + 2xh + 2h }{h} \\ & = \displaystyle \lim_{ h \to 0 } h + 2x + 2 \\ & = 0 + 2x + 2 \\ & = 2x + 2 \end{align} $
Jadi, turunannya : $ f^\prime (x) = 2x + 2 $
c). $ f(x) = \sin x $
¤ Ingat bentuk:
$ \sin (A+B) = \sin A \cos B + \cos A \sin B $.
Sehingga:
$ \begin{align} f(x+h) & = \sin (x + h) \\ & = \sin x \cos h + \cos x \sin h \end{align} $
¤ Rumus:
$ \cos x = 1 - 2\sin ^2 \frac{1}{2} x $
Sehingga :
$ \cos h = 1 - 2\sin ^2 \frac{1}{2} h $.
¤Bentuk :
$ \begin{align} \cos h - 1 & = (1 - 2\sin ^2 \frac{1}{2} h) - 1 \\ & = - 2\sin ^2 \frac{1}{2} h \\ & = - 2\sin \frac{1}{2} h . \sin \frac{1}{2} h \end{align} $
¤ Menentukan penyelesaiannya:
$ \begin{align} f^\prime (x) & = \displaystyle \lim_{h \to 0 } \frac{f(x+h) - f(x) }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ (\sin x \cos h + \cos x \sin h) - \sin x }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ (\sin x \cos h - \sin x ) + \cos x \sin h }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin x ( \cos h - 1 ) + \cos x \sin h }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin x ( \cos h - 1 ) }{h} \\ & + \displaystyle \lim_{h \to 0 } \frac{ \cos x \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ ( \cos h - 1 ) }{h} \\ & + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ - 2\sin \frac{1}{2} h . \sin \frac{1}{2} h }{h} \\ & + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ \sin \frac{1}{2} h }{h} . (- 2\sin \frac{1}{2} h ) \\ & + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \frac{1}{2}. (- 2\sin \frac{1}{2} 0 ) \\ & + \cos x . 1 \\ & = \sin x . \frac{1}{2}. (- 2\sin 0 ) + \cos x \\ & = \sin x . \frac{1}{2}. (0 ) + \cos x \\ & = 0 + \cos x \\ & = \cos x \end{align} $
Jadi, turunannya : $ f^\prime (x) = \cos x \, $ untuk $ f(x) = \sin x $
Demikianlah cara Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan. Semoga tulisan sederhana ini bermanfaat bagi pembaca sekalian.
$ f^\prime (a) = \displaystyle \lim_{ \Delta x \to 0 } \frac{f(a+\Delta x ) - f(a)}{\Delta x} \, \, $ jika limitnya ada.
atau bisa ditulis : $ f^\prime (a) = \displaystyle \lim_{ h \to 0 } \frac{f(a+ h ) - f(a)}{h} \, \, $ jika limitnya ada.
Bentuk $ f^\prime (a) \, $ dibaca " $ f \, $ aksen $ \, a $ ". Jika kita tuliskan $ x = a + h \, $ , maka $ h = x - a \, $ dan untuk $ h \to 0 \, $ maka $ x \to a $ . Sehingga definisi limit di atas bisa juga ditulis:
$ f^\prime (a) = \displaystyle \lim_{ h \to 0 } \frac{f(a+ h ) - f(a)}{h} = \displaystyle \lim_{ x \to a } \frac{f( x ) - f(a)}{x-a} $
Notasi Turunan
Turunan pertama dari $ y = f(x) \, $ di notasikan: $ f^\prime (x) \, $ atau $ y^\prime $
Turunan kedua dari $ y = f(x) \, $ di notasikan : $ f^{\prime \prime} (x) \, $ atau $ y^{\prime \prime} $
dan seterusnya.
Turunan pertama dari $ y = f(x) \, $ di notasikan: $ \frac{df(x)}{dx} \, $ atau $ \frac{dy}{dx} $
Turunan kedua dari $ y = f(x) \, $ di notasikan: $ \frac{d^2f(x)}{(dx)^2} \, $ atau $ \frac{d^2y}{(dx)^2} $
dan seterusnya.
Definisi atau pengertian Turunan Fungsi Secara Umum
Turunan fungsi $ f(x) \, $ untuk semua $ x \, $ dinotasikan dengan $ f^\prime (x) \, $ , didefinisikan sebagai:
$ f^\prime (x) = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \, \, $ jika limitnya ada.
Bentuk $ f^\prime (x) \, $ dibaca " $ f \, $ aksen $ \, x $ ".
Contoh Soal:
Tentukan turunan dari $ f(x) \, $ atau $ f^\prime (x) \, $ dari masing-masing fungsi berikut:
a). $ f(x) = 5x - 2 $
b). $ f(x) = x^2 + 2x $
c). $ f(x) = \sin x $
Penyelesaian: (Bentuk $ f^\prime (x) \, $ artinya turunan dari fungsi $ f(x) $)
a). $ f(x) = 5x - 2 $
$ \begin{align} f^\prime (x) & = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{(5(x+ h) - 2) - (5x-2)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{(5x + 5h - 2) - (5x-2)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{5h}{h} \\ & = \displaystyle \lim_{ h \to 0 } 5 \\ & = 5 \end{align} $
Jadi, turunannya : $ f^\prime (x) = 5 $
b). $ f(x) = x^2 + 2x $
$ \begin{align} f^\prime (x) & = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{ [(x+ h)^2 +2(x+ h)] - (x^2 + 2x) }{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{ [x^2 + 2xh + h^2 + 2x + 2h] - (x^2 + 2x) }{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{ h^2 + 2xh + 2h }{h} \\ & = \displaystyle \lim_{ h \to 0 } h + 2x + 2 \\ & = 0 + 2x + 2 \\ & = 2x + 2 \end{align} $
Jadi, turunannya : $ f^\prime (x) = 2x + 2 $
c). $ f(x) = \sin x $
¤ Ingat bentuk:
$ \sin (A+B) = \sin A \cos B + \cos A \sin B $.
Sehingga:
$ \begin{align} f(x+h) & = \sin (x + h) \\ & = \sin x \cos h + \cos x \sin h \end{align} $
¤ Rumus:
$ \cos x = 1 - 2\sin ^2 \frac{1}{2} x $
Sehingga :
$ \cos h = 1 - 2\sin ^2 \frac{1}{2} h $.
¤Bentuk :
$ \begin{align} \cos h - 1 & = (1 - 2\sin ^2 \frac{1}{2} h) - 1 \\ & = - 2\sin ^2 \frac{1}{2} h \\ & = - 2\sin \frac{1}{2} h . \sin \frac{1}{2} h \end{align} $
¤ Menentukan penyelesaiannya:
$ \begin{align} f^\prime (x) & = \displaystyle \lim_{h \to 0 } \frac{f(x+h) - f(x) }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ (\sin x \cos h + \cos x \sin h) - \sin x }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ (\sin x \cos h - \sin x ) + \cos x \sin h }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin x ( \cos h - 1 ) + \cos x \sin h }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin x ( \cos h - 1 ) }{h} \\ & + \displaystyle \lim_{h \to 0 } \frac{ \cos x \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ ( \cos h - 1 ) }{h} \\ & + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ - 2\sin \frac{1}{2} h . \sin \frac{1}{2} h }{h} \\ & + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ \sin \frac{1}{2} h }{h} . (- 2\sin \frac{1}{2} h ) \\ & + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \frac{1}{2}. (- 2\sin \frac{1}{2} 0 ) \\ & + \cos x . 1 \\ & = \sin x . \frac{1}{2}. (- 2\sin 0 ) + \cos x \\ & = \sin x . \frac{1}{2}. (0 ) + \cos x \\ & = 0 + \cos x \\ & = \cos x \end{align} $
Jadi, turunannya : $ f^\prime (x) = \cos x \, $ untuk $ f(x) = \sin x $
Demikianlah cara Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan. Semoga tulisan sederhana ini bermanfaat bagi pembaca sekalian.
Langganan:
Posting Komentar (Atom)
Posting Komentar untuk "Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan"