Belajar Matematika Online

Iklan Baris Pencarian

Prev

Next

Rumus Dasar Menyelesaikan Soal-Soal Turunan Fungsi


close
Setelah mahir Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan Fungsi baik untuk fungsi aljabar maupun fungsi trigonometri. Sekarang pada tulisan ini, akan diberikan Rumus Dasar Turunan Fungsi yang akan digunakan untuk Menyelesaikan Soal-Soal Turunan Fungsi.

Berikut ini daftar rumus-rumus dasar turunan fungsi:

1). $ y = c \rightarrow y^\prime = 0 $ .
dimana $ c \, $ adalah konstanta. Jadi, setiap kostanta turunannya adalah nol.

2). $ y = ax^n \rightarrow y^\prime = n.a.x^{n-1} $
dimana $ n \, $ adalah bilangan real.

3). $ y = U \pm V \rightarrow y^\prime = U^\prime \pm V^\prime $

4). $ y = U.V \rightarrow y^\prime = U^\prime . V + U. V^\prime $

5). $ y = \frac{U}{V} \rightarrow y^\prime = \frac{U^\prime . V - U. V^\prime}{V^2} $

dimana $ U \, $ dan $ V \, $ adalah dua buah fungsi yang berbeda.

6). $ y = [g(x)]^n \rightarrow y^\prime = n.[g(x)]^{n-1} . g^\prime (x) $

7). $ y = f[g(x)] \rightarrow y^\prime = f^\prime [g(x)] . g^\prime (x) $

Contoh-contoh soalnya sebagai berikut.

1). Tentukan turunan fungsi aljabar berikut:
a). $ y = 3 $
b). $ y = x^5 $
c). $ y = \frac{5}{x^2} $
d). $ y = 3\sqrt{x} $
e). $ y = \frac{2}{3x\sqrt{x} } $
f). $ y = \frac{3}{2}\sqrt[5]{x^3} $

Penyelesaian :

a). Turunan konstanta adalah nol (rumus dasar 1).
$ y = 3 \rightarrow y^\prime = 0 $
b). Rumus dasar 2) dengan $ n = 5 $
$ y = x^5 \rightarrow y^\prime = n.x^{n-1} = 5.x^{5-1} = 5x^4 $
c). Rumus dasar 2, dan gunakan sifat eksponen,
$ y = \frac{5}{x^2} = 5 x^{-2} \\ \rightarrow y^\prime = n . a . x^{n-1} \\ = (-2). 5. x^{(-2) - 1} \\ = -10x^{-3} = \\ \frac{-10}{x^3} $
d). Gunakan rumus dasar 2, dan sifat eksponen,
$ y = 3\sqrt{x} = 3x^\frac{1}{2} \\ \rightarrow y^\prime = n.a.x^{n-1} \\ = \frac{1}{2}. 3. x^{\frac{1}{2} - 1} \\ = \frac{3}{2} x^{-\frac{1}{2}} \\ = \frac{3}{2} \frac{1}{x^\frac{1}{2}} \\ = \frac{3}{2\sqrt{x}} $
e). Rumus dasar 2, dan gunakan sifat eksponen,
$ y = \frac{2}{3x\sqrt{x} } = \frac{2}{3x^1. x^\frac{1}{2} } = \frac{2}{3x^\frac{3}{2} } = \frac{2}{3} x^{-\frac{3}{2}} $
$ y^\prime = n.a.x^{n-1} = -\frac{3}{2} . \frac{2}{3} . x^{-\frac{3}{2} - 1 } = - x^{-\frac{5}{2}} = \frac{-1}{x^\frac{5}{2}} = \frac{-1}{x^2.x^\frac{1}{2}} = \frac{-1}{x^2\sqrt{x}} $
f). Rumus dasar 2, dan gunakan sifat eksponen,
$ y = \frac{3}{2}\sqrt[5]{x^3} = \frac{3}{2}x^\frac{3}{5} \rightarrow y^\prime = n.a.x^{n-1} = \frac{3}{5}. \frac{3}{2}.x^{\frac{3}{5} - 1} = \frac{9}{10} x^{-\frac{2}{5}} = \frac{9}{10} \frac{1}{ x^{\frac{2}{5}} } = \frac{9}{10 \sqrt[5]{x^2}} $

2). Tentukan turunan ($ f^\prime (x) $) dari setiap fungsi berikut.
a). $ f(x) = 3x^2 - 2x $
b). $ f(x) = 2\sqrt{x} + 5x^3 - 7 $
c). $ f(x) = x^5 + 2x^3 - 3x + 1 $

Penyelesaian :

Untuk menentukan turunan fungsi-fungsinya, kita gunakan rumus dasar 3. Rumus dasar 3 itu maksudnya setiap suku masing-masing diturunkan.
a). $ f(x) = 3x^2 - 2x $
Misalkan :
$ U = 3x^2 \rightarrow U^\prime = 2.3.x^{2-1} = 6x $
$ V = 2x= 2x = 2x^1 \rightarrow V^\prime = 1.2.x^{1-1} = 2 . x^0 = 2.1 = 2 $
Untuk fungsi yang variabelnya pangkat satu : $ y = ax \rightarrow y^\prime = a $
Turunan fungsinya adalah :
$ f(x) = U- V \rightarrow f^\prime (x) = U^\prime - V^\prime = 6x - 2 $
b). $ f(x) = 2\sqrt{x} + 5x^3 - 7 = 2x^\frac{1}{2} + 5x^3 - 7 $
$ f^\prime (x) = \frac{1}{2} . 2 . x^{\frac{1}{2} - 1 } + 3.5.x^{3-1} - 0 = x^{-\frac{1}{2}} + 15x^2 = \frac{1}{\sqrt{x} } + 15x^2 $
c). $ f(x) = x^5 + 2x^3 - 3x + 1 \rightarrow f^\prime (x) = 5.x^{5-1} + 3.2.x{3-1} - 3 + 0 = 5x^4 + 6x^2 - 3 $

3). Tentukan turunan fungsi aljabar dari fungsi $ y = (x^2-1)(2x^3 + x) $

Penyelesaian :

Kita gunakan rumus dasar 4. Sebenarnya setiap fungsi bisa dikalikan terlebih dahulu kemudian diturunkan menggunakan rumus dasar 3 dan 2.
a). $ y = (x^2-1)(2x^3 + x) $
Misalkan :
$ U = (x^2-1) \rightarrow U^\prime = 2x - 0 = 2x $
$ V = (2x^3 + x) \rightarrow V^\prime = 6x^2 + 1 $
Sehingga turunannya :
$ \begin{align} y & = UV \\ y^\prime & = U^\prime . V + U. V^\prime \\ & = 2x. (2x^3 + x) + (x^2-1).( 6x^2 + 1) \\ & = 4x^4 + 2x^2 + ( 6x^4 + x^2 - 6x^2 - 1 ) \\ & = 10x^4 - 3x^2 - 1 \end{align} $
Jadi, turunannya adalah $ y^\prime = 10x^4 - 3x^2 - 1 $

4). Tentukan turunan fungsi $ y = \frac{x^2 + 2}{3x - 5} $ ?

Penyelesaian :
Kita gunakan rumus dasar 5).

Misalkan :
$ U = x^2 + 2 \rightarrow U^\prime = 2x + 0 = 2x $
$ V = 3x - 5 \rightarrow V^\prime = 3 - 0 = 3 $
Sehingga turunannya :
$ \begin{align} y & = \frac{U}{V} \\ y^\prime & = \frac{U^\prime . V - U. V^\prime}{V^2} \\ & = \frac{2x . (3x - 5) - (x^2 + 2). 3}{(3x - 5)^2} \\ & = \frac{6x^2 - 10x - 3x^2 - 6}{9x^2 -30x + 25} \\ & = \frac{3x^2 - 10x - 6}{9x^2 -30x + 25} \end{align} $
Jadi, turunannya adalah $ y^\prime = \frac{3x^2 - 10x - 6}{9x^2 -30x + 25} $

Demikianlah Rumus Dasar Menyelesaikan Soal-Soal Turunan Fungsi, semoga tulisan sederhana ini bermanfaat bagi yang sedang membutuhkannya.
"Cari Artikel/Blog Admin Matematika Lainnya"
Perhatian: Mau pasang iklan disini? Chat Via WA 082349165919
MY IKLAN
Buku Metode Berhitung Alif
Pesan Di Sini
atau lihat dan dapatkan ebooknya di Google Play Book

Tidak ada komentar:

Posting Komentar

Komentar yang tidak baik atau menampilkan segala hal yang tidak baik, tidak akan kami setujui atau akan kami hapus!

Copyright © Matematika Ku Bisa. All rights reserved. Template by CB. Theme Framework: Responsive Design
Kirim Pesan atau Soal
×
_

Hai, Kamu bisa kirim pesan atau PR Matematikamu ke Admin, di sini! Jangan lupa like halaman admin ya, terima kasih!