Rumus Dasar Menyelesaikan Soal-Soal Turunan Fungsi

Setelah mahir Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan Fungsi baik untuk fungsi aljabar maupun fungsi trigonometri. Sekarang pada tulisan ini, akan diberikan Rumus Dasar Turunan Fungsi yang akan digunakan untuk Menyelesaikan Soal-Soal Turunan Fungsi.

Berikut ini daftar rumus-rumus dasar turunan fungsi:

1). $ y = c \rightarrow y^\prime = 0 $ .
dimana $ c \, $ adalah konstanta. Jadi, setiap kostanta turunannya adalah nol.

2). $ y = ax^n \rightarrow y^\prime = n.a.x^{n-1} $
dimana $ n \, $ adalah bilangan real.

3). $ y = U \pm V \rightarrow y^\prime = U^\prime \pm V^\prime $

4). $ y = U.V \rightarrow y^\prime = U^\prime . V + U. V^\prime $

5). $ y = \frac{U}{V} \rightarrow y^\prime = \frac{U^\prime . V - U. V^\prime}{V^2} $

dimana $ U \, $ dan $ V \, $ adalah dua buah fungsi yang berbeda.

6). $ y = [g(x)]^n \rightarrow y^\prime = n.[g(x)]^{n-1} . g^\prime (x) $

7). $ y = f[g(x)] \rightarrow y^\prime = f^\prime [g(x)] . g^\prime (x) $

Contoh-contoh soalnya sebagai berikut.

1). Tentukan turunan fungsi aljabar berikut:
a). $ y = 3 $
b). $ y = x^5 $
c). $ y = \frac{5}{x^2} $
d). $ y = 3\sqrt{x} $
e). $ y = \frac{2}{3x\sqrt{x} } $
f). $ y = \frac{3}{2}\sqrt[5]{x^3} $

Penyelesaian :

a). Turunan konstanta adalah nol (rumus dasar 1).
$ y = 3 \rightarrow y^\prime = 0 $
b). Rumus dasar 2) dengan $ n = 5 $
$ y = x^5 \rightarrow y^\prime = n.x^{n-1} = 5.x^{5-1} = 5x^4 $
c). Rumus dasar 2, dan gunakan sifat eksponen,
$ y = \frac{5}{x^2} = 5 x^{-2} \\ \rightarrow y^\prime = n . a . x^{n-1} \\ = (-2). 5. x^{(-2) - 1} \\ = -10x^{-3} = \\ \frac{-10}{x^3} $
d). Gunakan rumus dasar 2, dan sifat eksponen,
$ y = 3\sqrt{x} = 3x^\frac{1}{2} \\ \rightarrow y^\prime = n.a.x^{n-1} \\ = \frac{1}{2}. 3. x^{\frac{1}{2} - 1} \\ = \frac{3}{2} x^{-\frac{1}{2}} \\ = \frac{3}{2} \frac{1}{x^\frac{1}{2}} \\ = \frac{3}{2\sqrt{x}} $
e). Rumus dasar 2, dan gunakan sifat eksponen,
$ y = \frac{2}{3x\sqrt{x} } = \frac{2}{3x^1. x^\frac{1}{2} } = \frac{2}{3x^\frac{3}{2} } = \frac{2}{3} x^{-\frac{3}{2}} $
$ y^\prime = n.a.x^{n-1} = -\frac{3}{2} . \frac{2}{3} . x^{-\frac{3}{2} - 1 } = - x^{-\frac{5}{2}} = \frac{-1}{x^\frac{5}{2}} = \frac{-1}{x^2.x^\frac{1}{2}} = \frac{-1}{x^2\sqrt{x}} $
f). Rumus dasar 2, dan gunakan sifat eksponen,
$ y = \frac{3}{2}\sqrt[5]{x^3} = \frac{3}{2}x^\frac{3}{5} \rightarrow y^\prime = n.a.x^{n-1} = \frac{3}{5}. \frac{3}{2}.x^{\frac{3}{5} - 1} = \frac{9}{10} x^{-\frac{2}{5}} = \frac{9}{10} \frac{1}{ x^{\frac{2}{5}} } = \frac{9}{10 \sqrt[5]{x^2}} $

2). Tentukan turunan ($ f^\prime (x) $) dari setiap fungsi berikut.
a). $ f(x) = 3x^2 - 2x $
b). $ f(x) = 2\sqrt{x} + 5x^3 - 7 $
c). $ f(x) = x^5 + 2x^3 - 3x + 1 $

Penyelesaian :

Untuk menentukan turunan fungsi-fungsinya, kita gunakan rumus dasar 3. Rumus dasar 3 itu maksudnya setiap suku masing-masing diturunkan.
a). $ f(x) = 3x^2 - 2x $
Misalkan :
$ U = 3x^2 \rightarrow U^\prime = 2.3.x^{2-1} = 6x $
$ V = 2x= 2x = 2x^1 \rightarrow V^\prime = 1.2.x^{1-1} = 2 . x^0 = 2.1 = 2 $
Untuk fungsi yang variabelnya pangkat satu : $ y = ax \rightarrow y^\prime = a $
Turunan fungsinya adalah :
$ f(x) = U- V \rightarrow f^\prime (x) = U^\prime - V^\prime = 6x - 2 $
b). $ f(x) = 2\sqrt{x} + 5x^3 - 7 = 2x^\frac{1}{2} + 5x^3 - 7 $
$ f^\prime (x) = \frac{1}{2} . 2 . x^{\frac{1}{2} - 1 } + 3.5.x^{3-1} - 0 = x^{-\frac{1}{2}} + 15x^2 = \frac{1}{\sqrt{x} } + 15x^2 $
c). $ f(x) = x^5 + 2x^3 - 3x + 1 \rightarrow f^\prime (x) = 5.x^{5-1} + 3.2.x{3-1} - 3 + 0 = 5x^4 + 6x^2 - 3 $

3). Tentukan turunan fungsi aljabar dari fungsi $ y = (x^2-1)(2x^3 + x) $

Penyelesaian :

Kita gunakan rumus dasar 4. Sebenarnya setiap fungsi bisa dikalikan terlebih dahulu kemudian diturunkan menggunakan rumus dasar 3 dan 2.
a). $ y = (x^2-1)(2x^3 + x) $
Misalkan :
$ U = (x^2-1) \rightarrow U^\prime = 2x - 0 = 2x $
$ V = (2x^3 + x) \rightarrow V^\prime = 6x^2 + 1 $
Sehingga turunannya :
$ \begin{align} y & = UV \\ y^\prime & = U^\prime . V + U. V^\prime \\ & = 2x. (2x^3 + x) + (x^2-1).( 6x^2 + 1) \\ & = 4x^4 + 2x^2 + ( 6x^4 + x^2 - 6x^2 - 1 ) \\ & = 10x^4 - 3x^2 - 1 \end{align} $
Jadi, turunannya adalah $ y^\prime = 10x^4 - 3x^2 - 1 $

4). Tentukan turunan fungsi $ y = \frac{x^2 + 2}{3x - 5} $ ?

Penyelesaian :
Kita gunakan rumus dasar 5).

Misalkan :
$ U = x^2 + 2 \rightarrow U^\prime = 2x + 0 = 2x $
$ V = 3x - 5 \rightarrow V^\prime = 3 - 0 = 3 $
Sehingga turunannya :
$ \begin{align} y & = \frac{U}{V} \\ y^\prime & = \frac{U^\prime . V - U. V^\prime}{V^2} \\ & = \frac{2x . (3x - 5) - (x^2 + 2). 3}{(3x - 5)^2} \\ & = \frac{6x^2 - 10x - 3x^2 - 6}{9x^2 -30x + 25} \\ & = \frac{3x^2 - 10x - 6}{9x^2 -30x + 25} \end{align} $
Jadi, turunannya adalah $ y^\prime = \frac{3x^2 - 10x - 6}{9x^2 -30x + 25} $

Demikianlah Rumus Dasar Menyelesaikan Soal-Soal Turunan Fungsi, semoga tulisan sederhana ini bermanfaat bagi yang sedang membutuhkannya.

0 Response to "Rumus Dasar Menyelesaikan Soal-Soal Turunan Fungsi "

Post a Comment

Komentar yang tidak baik atau menampilkan segala hal yang tidak baik, tidak akan kami setujui atau akan kami hapus!

Iklan Atas Artikel

Apakah Anda ingin PINTAR MATEMATIKA?  Ayo Belajar Matematika dari dasar! Baca Ebook Belajar Matematika dari Dasar.

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel

Mau jual Ebook di Google Play, tapi belum punya akun mitra google book? Baca Cara Daftar Mitra Google Buku yang Sementara Ditutup: Saya Berkali-kali Diterima Lho