Solusi Integral Akar tan x dx

Untuk menyelesaikan $\int \sqrt{tan x} \quad dx$, kita gunakan subsitusi $\sqrt{tanx}=y$.

$tan x=y^2$
$sec^2 x dx=2y dy$

$dx=\frac{2y}{sec^2 x} dy$
$dx=\frac{2y}{1+tan^2 x} dy$
$dx=\frac{2y}{1+y^4} dy$

Sehingga:
$\int \sqrt{tan x} \quad dx$
$=\int y\frac{2y}{1+y^4} dy$
$=\int \frac{2y^2}{1+y^4} dy$
$=\int \frac{(y^2 +1)+(y^2-1}{y^4+1} dy$
$=\int \frac{y^2+1}{y^4+1} dy + \int \frac{y^2-1}{y^4+1} dy$
$=\int \frac{1+ \frac{1}{y^2}}{y^2+\frac{1}{y^2}} dy$
$+ \int \frac{1- \frac{1}{y^2}}{y^2+\frac{1}{y^2}} dy$
$=l_1 + l_2$

$l_1$ pake subsitusi $y-\frac{1}{y}=t$
$l_2$ pake subsitusi $y+\frac{1}{y^2}$

Silahkan untuk melanjutkannya!

Berlangganan update artikel terbaru via email:

Promo Domain dan Hosting Murah

0 Response to "Solusi Integral Akar tan x dx"

Post a Comment

Komentar yang tidak baik atau menampilkan segala hal yang tidak baik, tidak akan kami setujui atau akan kami hapus!

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel


Harga Promo Rp.85000 (Rp. 100.000)
KLIK DI SINI
Mau gabung Grup WA Matematika Ku Bisa? Join Di Sini!