Belajar Matematika Online

Definisi Formal Bilangan Kompleks



Himpunan bilangan Kompleks $C$ adalah himpunan semua pasangan terurut (a,b) yang dilengkapi dua operasi penjumlahan dan perkalian yang didefinisikan sebagai:

1. Penjumlahan

Jika $Z_1=(a_1,b_1)$ dan $Z_2=(a_2,b_2)$ maka $Z_1+Z_2=(a_1+a_2,b_1+b_2)$

2. Perkalian

Jika $Z_1=(a_1,b_1)$ dan $Z_2=(a_2,b_2)$ maka $Z_1.Z_2=(a_1.a_2-b_1.b_2,a_1.b_2+a_2.b_1)$.

Sekarang, dengan menggunakan operasi perkalian di atas diketahui $(0,1).(0,1)=(-1,0)=-1$ ,sehingga bilangan imajiner i dapat ditulis i=(0,1) (ingat $i.i=i^2=-1$).

Selanjutnya berdasarkan sifat penjumlahan dan perkalian, bilangan kompleks $Z=(a,b)$ dapat ditulis sebagai:

$(a,b)=(a,0)+(0,b)$
$(a,b)=(a,0)(1,0)+(0,b)(0,1)$
$(a,b)=a.1 + b. i$
$(a,b)=a+bi$

Perlihatkan! (diserahkan kepada pembaca)
1. $(0,1)(0,1)=-1$
2. $(a,0)=(a,o)(1,0)$
3. $(0,b)=(0,b)(0,1)$

Jadi, bilangan kompleks Z=(a,b)dapat ditulis :

Z=a+bi

dengan, $a,b \in R$, i bilangan imajiner, bagian real bilangan kompleks Z ditulis $Re(Z)=a$ dan bagian imajiner bilangan kompleks Z ditulis $Im(Z)=b$.
Perhatian: Mau pasang iklan disini? Chat Via WA 082349165919
MY IKLAN
Buku Metode Berhitung Alif
Pesan Di Sini
atau lihat dan dapatkan ebooknya di Google Play Book

Tidak ada komentar:

Posting Komentar

Komentar yang tidak baik atau menampilkan segala hal yang tidak baik, tidak akan kami setujui atau akan kami hapus!

Copyright © Matematika Ku Bisa. All rights reserved. Template by CB. Theme Framework: Responsive Design
Kirim Pesan atau Soal
×
_

Hai, Kamu bisa kirim pesan atau PR Matematikamu ke Admin, di sini! Jangan lupa like halaman admin ya, terima kasih!