Belajar Matematika Online

Minor dan Kofaktor Matriks



Definisi Matriks dan Kesamaan Dua Matriks merupakan materi prasyarat yang wajib dibaca untuk dapat memahami penjelasan mengenai materi Minor dan Kofaktor dari sebuah matriks yang diketahui. Dengan menguasai materi ini, diharapkan kalian dapat menggunakan dengan lancar dalam menentukan determinan matriks berordo 3x3 dengan cara ekspansi kofaktor sepanjang baris atau kolom tertentu.

Definisi Minor dan Kofaktor
Misalkan $A_{nxn}=[a_{ij}]$, maka:

1. Minor dari $a_{ij}$ yang dilambangkan oleh $M_{ij}$ adalah determinan dari submatriks A yang diperoleh dengan cara membuang semua entri pada baris ke-i dan kolom ke-j.

2. Kofaktor $a_{ij}$, yang dilambangkan oleh $C_{ij}$ adalah $(-1)^{i+j}.M_{ij}$.


Contoh Soal: Carilah minor dan kofaktor dari dari entri $a_{11}$ dan $a_{32}$ dari matriks A dibawah!

$A= \begin{bmatrix} 2 & -3 & 1 \\ 0 & -1 & -2 \\ 4 & 5 & 4 \\ \end{bmatrix}$

Solved:
$M_{11}=\begin{vmatrix} -1 & -2 \\ 5 & 4 \\ \end{vmatrix}=-1.(-4)-(-2.5)=14$

$M_{32}=\begin{vmatrix}
2 & 1 \\ 0 & -2 \\ \end{vmatrix}=2.(-2)-(1.0)=-4$

$C_{11}=(-1)^{1+1}.M_{11}=M_{11}=14$

$C_{32}=(-1)^{3+2}.M_{32}=-M_{32}=-(-4)=4$


Latihan: Cari Minor dan kofaktor dari entri $a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{33}$ !

$A=\begin{bmatrix}
2 & -3 & 1 \\
0 & -1 & -2 \\
4 & 5 & 4 \\
\end{bmatrix}$
Perhatian: Mau pasang iklan disini? Chat Via WA 082349165919
MY IKLAN
Buku Metode Berhitung Alif
Pesan Di Sini
atau lihat dan dapatkan ebooknya di Google Play Book

Tidak ada komentar:

Posting Komentar

Komentar yang tidak baik atau menampilkan segala hal yang tidak baik, tidak akan kami setujui atau akan kami hapus!

Copyright © Matematika Ku Bisa. All rights reserved. Template by CB. Theme Framework: Responsive Design
Kirim Pesan atau Soal
×
_

Hai, Kamu bisa kirim pesan atau PR Matematikamu ke Admin, di sini! Jangan lupa like halaman admin ya, terima kasih!