Memahami Hukum Pencoretan

Hukum pencoretan merupakan hukum yang digunakan dalam melakukan penyederhanaan bentuk persamaan yang melibatkan operasi biner seperti operasi penjumlahan (+), perkalian (x), dsb. 

Pada tulisan Teorema-teorema atau Sifat-sifat Grup, ini disebut dengan hukum pembatalan, yang terdiri dari pembatalan kiri dan pembatalan kanan. Contoh penerapan hukum ini sebagai berikut.

Diberikan persamaan 2x + 4= 6, bagaimana cara menentukan nilai x dengan menggunakan hukum pencoretan?

Menerapkan hukum pencoretan untuk menyelesaikan persamaan tersebut, dapat dilakukan dengan cara sebagai berikut.

2x + 4 = 6
2x + 4 = 2 + 4
2x = 2
2x = 2.1
x = 1

Perhatikan di atas, 6 diubah menjadi 2 + 4 agar menjadi 2x + 4 = 2 + 4 sehingga hukum pencoretan kanan untuk operasi penjumlahan dapat dilakukan. Setelah dilakukan pencoretan maka bentuk persamaannya menjadi 2x=2. Agar hukum pencoretan kiri untuk operasi perkalian juga dapat digunakan, 2 diubah menjadi 2.1 sehingga 2x=2 berubah menjadi 2x=2.1. Dengan menerapkan hukum pencoretan kiri diperoleh x=1.

Untuk lebih jelasnya, berikut ini diberikan definisnya.

Definisi:
1. Suatu himpunan A terhadap operasi * dikatakan memenuhi hukum pencoretan kiri jika a*b=a*c mengakibatkan b=c.

2. Suatu himpunan A dengan operasi * dikatakan memenuhi hukum pencoretan kanan jika b*a=c*a mengakibatkan b=c.

Catatan: Untuk himpunan A yang komutatif, jika memenuhi hukum pencoretan kiri, pasti memenuhi hukum pencoretan kanan karena a*b=b*a dan a*c=c*a sehingga jika a*b=a*c yang mengakibatkan b=c maka untuk b*a=c*a juga mengakibatkan b=c.

Hasil penting berikut ini adalah jaminan suatu himpunan memenuhi hukum pencoretan kiri dan kanan tanpa melihat apakah himpunan tersebut komutatif atau tidak.

"Jika A suatu grup maka A memenuhi hukum pencoretan kiri dan hukum pencoretan kanan"

Bukti:

Ambil sebarang a, b, c, f, g, dan h $\in A$. Jika a*b=a*c dan g*f=h*f akan diperlihatkan b=c dan g=h.

Karena A grup maka terdapat a' dan f' sedemikian hingga a'*a=a*a'=e dan f*f'=f'*f=e dimana e unsur identitas terhadap operasi *. Maka,

a*b=a*c
a'*(a*b)=a'(a*c)
(a'*a)*b=(a'*a)*c
e*b=e*c
b=c.

g*f=h*f
(g*f)*f'=(h*f)f'
g*(f*f')=h*(f*f')
g*e=h*e
g=h
(Terbukti)
Sudah tahu Definisi Grup? Pahami konsepnya klik di sini.

Contoh-contoh:
¤ Himpunan bilangan asli dengan operasi perkalian memenuhi hukum pencoretan kiri dan kanan sekaligus karena pada himpunan tersebut dengan operasi perkalian berlaku sifat komutatif.

¤ Karena (Z, +) adalah grup maka berlaku hukum pencoretan kiri dan kanan.

Latihan: Coba perlihatkan apakah himpunan matriks 2x2 bilangan riil dengan operasi perkalian matriks memenuhi atau tidak memenuhi hukum pencoretan kiri dan hukum pencoretan kenan!

Posting Komentar untuk "Memahami Hukum Pencoretan"


Jangan Lewatkan Kaos Matematika Keren & Unik di👇



Dapatkan panduan Belajar Matematika dari Nol GRATIS di👇