Ξ
×

KETAKSAMAAN

Materi Ketaksamaan ini adalah materi yang dirangkum dalam matakuliah Kalkulus 1, yang merupakan materi pra-kalkulus. Sebelum mempelajari kalkulus, Anda harus mempelajari ketaksamaan ini.

Daftar Isi:

  1. Penulisan Selang (Interval)
  2. Menyelesaikan Ketaksamaan
    • Bentuk Liear
    • Bentuk Kuadrat
    • Bentuk Pecahan
    • Nilai Mutlak

#1. Penulisan Selang (Interval)

Untuk menyelesaikan suatu ketaksamaan berarti kita mencari semua hipunan bilangan yang membuat ketaksamaan berlaku.

Himpunan penyelesaian itu berupa suatu selang. Adapun penulisannya, sbb:


#2. Menyelesaikan Ketaksamaan

A. BENTUK LINEAR

Bentuk linear yaitu hanya mempunyai variabel berpangkat 1 dan jika digambarkan dalam sebuah grafik berupa garis lurus.

Contoh: Selesaikan $x-7 < 2x-5$

Penyelesaian:
$x - 7 < 2x -5 \\ x -2x < -5+7 \\ -x<2 \\ x >-2$

B. BENTUK KUADRAT

Fungsi kuadrat berbentuk $ax^2 +bx+c$ dengan $a \neq 0$

Contoh: Selesaikan $x^2 -x < 6$

Penyelesaian:
$x^2 - x < 6 \\ x^2 -x - 6 < 0 \\ (x-3)(x+2) \\ x < 3 \ atau \ x > -2$

C. BENTUK PECAHAN

Bentuk umum: $\frac{A(x)}{B(x)}$ < $\frac{C(x)}{D(x)}$, tanda < bisa diganti dengan tanda pertidaksamaan lain.

Adapun cara menyelesaikan pertidaksamaan bentuk pecahan adalah:

  • Nyatakan persamaan sehingga di dapat salah satu ruasnya menjadi 0 (nol), yaitu: $\frac{A(x)}{B(x)} - \frac{C(x)}{D(x)} < 0$
  • Sederhanakan ruas kiri, misal diperoleh $\frac{p(x)}{q(x)}$
  • Tentukan titik-titik pemecah. Titik pemecah adalah nilai yang menyebabkan 0
  • Ujilah titik-titik pada setiap selang dari titik-titik pemecah dan himpunan penyelesaiannya adalah interval yang membuat ketaksamaan berlaku.

Contoh: Selesaikan  $\frac{x-2}{x-1} > \frac{x+3}{x+1}$

Penyelesaian: $\frac{x-2}{x-1} > \frac{x+3}{x+1} \\ \frac{x-2}{x-1} - \frac{x+3}{x+1}>0 \\ \frac{-3x+1}{(x-1)(x+1)}>0$ 

Jadi titik-titik pemecahnya adalah $-1$, $1/3$, dan $1$.

Uji titik pada selang $(-\infty, -1)$ diperoleh hasil positif atau >0 ... (i) 

Uju titik pada selang $(-1 , 1/3 )$ diperoleh hasil negatif atau <0 ... (ii) 

Uji titik pada selang $(1/3, 1)$ diperoleh hasil positif atau >0      ... (iii) 

Uji titik pada selang $(1, \infty)$ diperoleh hasil negatif atau <0   ... (iv) 

Dengan demikian berdasarkan hasil titik uji tersebut kita simpulkan bahwa HP-nya adalah $(- \infty, -1) \cup (1/3, 1)$

D. NILAI MUTLAK

Nilai mutlak suatu bilangan real x dinyatakan dengan  $|x|$ didefinisikan sebagai : $|x| = x$ jika $x  > 0$ atau $x=0$ $|x| = -x$ jika $x < 0$ atau $x=0$ Sifat-sifat nilai mutlak

  1. Jika $|x| < p$ maka himpunan penyelesaiannya $-p < x < p$,    $p > 0$
  2. Jika $|x| > p$ maka himpunan penyelesaiannya $x < -p$ atau $x > p$,    $p>0$
  3. Jika $|f(x)| < p$ maka himpunan penyelesaiannya $-p < f(x) < p$,    $p > 0$
  4. Jika $|f(x)| > p$ maka himpunan penyelesaiannya $f(x) < -p$ atau $f(x) > p$,    $p>0$
  5. $|x| = \sqrt{x^2}$
  6. Jika $|f(x)|<|g(x)|$ maka ekuivalen dengan $[f(x)]^2 < [g(x)]^2$
  7. Jika $|f(x)|>|g(x)|$ maka ekuivalen dengan $[f(x)]^2 > [g(x)]^2$
  8. \mid (a+b) \mid \ge \mid a \mid - \mid b \mid ; \mid (a+b) \mid \le \mid a \mid + \mid b \mid ; \mid (a-b) \mid \ge \mid a \mid - \mid b \mid ;
    \mid (a-b) \mid \le \mid a \mid + \mid b \mid ;
  9. \mid ab \mid = \mid a \mid \, \mid b \mid ;
    \mid \frac{a}{b} \mid = \frac{\mid a \mid}{\mid b \mid} , b \ne 0 ;

Contoh: Selesaikan $|3x-5| < 1$

Berdasarkan sifat ke-1 maka penyelesaiannya adalah $3x - 5 < -1$ atau $3x - 5 > 1$ $\Leftrightarrow$ $3x < 4$ atau $3x > 6$ $\Leftrightarrow$ $x < 4/3$ atau $x > 2$

Demikian postingan tentang ketaksamaan, semoga bermanfaat. Baca postingan selanjutnya dengan judul Sistem Koordinat 4 (Empat) Bidang.

Posting Komentar untuk "KETAKSAMAAN"

Iklan Alqur'an
Rekomendasi Produk Matematika
Jam Dinding Matematika Case HP Matematika
Binder Matematika Binder Matematika
Rekomendasi Buku Matematika
Buku Belajar Matematika dari Dasar Buku Matematika SMP
Buku Matematika SMA Buku Penelitian Pendidikan Matematika

Sulit belajar matematika? Ingin belajar matematika tapi bingung mulai dari mana? Dapatkan sekarang Buku Belajar Matematika dari Dasar yang bisa pelajari semua materi matematika yang dibutuhkan, karena stok terbatas dan ada promo gratis ongkir hingga 100% .